Разработка аналитического обеспечения технологии машинного обучения в деятельности страховой компании : магистерская диссертация / Development of analytical support for machine learning technology in the activities of an insurance company

В диссертации были изучены особенности использования методов машинного обучения в сфере страхования. Рассмотрены возможности архитектурного подхода в разработке модели машинного обучения. Осуществлен анализ тенденций цифровой трансформации сферы страхования. Осуществлена оценка результативности использования машинного обучения в страховании. Построена полная модель архитектуры ПАО СК «Росгосстрах». Разработана аналитическая модель машинного обучения в сфере тарификации страховой компании. На основе процессного подхода детально рассмотрены все фазы проекта по внедрению модели машинного обучения в деятельность страховой компании. Разработана и реализована имитационная модель управления проектом разработки и внедрения модели машинного обучения в деятельность страховой компании на основе различных сценарием. / The dissertation studied the features of using machine learning methods in the field of insurance. The possibilities of the architectural approach in the development of a machine learning model are considered. The analysis of trends in the digital transformation of the insurance industry has been carried out. The effectiveness of the use of machine learning in insurance has been evaluated. A complete model of the architecture of PJSC IC Rosgosstrakh was built. An analytical model of machine learning in the field of tariffing of an insurance company has been developed. Based on the process approach, all phases of the project to introduce a machine learning model into the activities of an insurance company are considered in detail. A simulation model for project management for the development and implementation of a machine learning model in the activities of an insurance company has been developed and implemented based on various scenarios.

Identiferoai:union.ndltd.org:urfu.ru/oai:elar.urfu.ru:10995/119571
Date January 2022
CreatorsДенисенко, Н. С., Denisenko, N. S.
ContributorsМедведев, М. А., Коломыцева, А. О., Medvedev, M. A., Kolomytseva, A. O., УрФУ. Институт радиоэлектроники и информационных технологий – РТФ, Базовая кафедра «Аналитика больших данных и методы видеоанализа»
Publisherб. и.
Source SetsUral Federal University
LanguageRussian
Detected LanguageRussian
TypeMaster's thesis, info:eu-repo/semantics/masterThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
RightsПредоставлено автором на условиях простой неисключительной лицензии, http://elar.urfu.ru/handle/10995/31613

Page generated in 0.0026 seconds