Разработка информационной системы классификации заявок и обращений с применением алгоритмов машинного обучения : магистерская диссертация / Development of an information system for classifying applications and requests using machine learning algorithms

This work provides an overview of data preprocessing methods and machine learning models for text classification, trains a model for classifying applications, and describes the development of a system for collecting, classifying and processing requests. Risks were identified and requirements for the system were formulated, interface layouts and IT infrastructure were developed, and documentation support was created. The machine learning model API was implemented using the Facet API framework, a web service for accepting and processing applications was developed using the Flask framework. / В данной работе представлен обзор методов предварительной обработки данных и моделей машинного обучения для классификации текстов, проведено обучение модели для классификации заявок, а также описана разработка системы сбора, классификации и обработки заявок. Были выявлены риски и сформулированы требования к системе, разработаны макеты интерфейса и ИТ-инфраструктура, а также создано документационное обеспечение. Был реализован API модели машинного обучения с использованием фреймворка FastAPI, веб-сервис для приема и обработки заявок был разработан с использованием фреймворка Flask.

Identiferoai:union.ndltd.org:urfu.ru/oai:elar.urfu.ru:10995/140367
Date January 2024
CreatorsХудорожков, Л. Ю., Khudorozhkov, L. Y.
ContributorsКислицын, Е. В., Kislitsyn, E. V., УрФУ. Институт радиоэлектроники и информационных технологий-РТФ, Кафедра информационных технологий и систем управления
Publisherб. и.
Source SetsUral Federal University
LanguageRussian
Detected LanguageRussian
TypeMaster's thesis, info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
RightsПредоставлено автором на условиях простой неисключительной лицензии, http://elar.urfu.ru/handle/10995/31613

Page generated in 0.0018 seconds