Return to search

Télédétection de l'ilménite pour l'identification de régions propices à l'exploration minérale sur la Lune / Remote Sensing of ilmenite for the identification of areas suitable for mineral exploration on the Moon

Résumé: Dans le cadre de sa « Stratégie d'exploration globale » établie en 2009, l'Agence spatiale canadienne désire caractériser la répartition du minéral ilménite, un oxyde de fer et titane (FeTiO3). Ce minéral est considéré comme une ressource clé, puisque l'oxygène qu'il contient peut être extrait et pourrait servir à la fois de carburant et de matière première à l'établissement d'humains sur la Lune. La cartographie de l'ilménite n'a pas été réalisée à ce jour en raison de l'absence de données dans les longueurs d'ondes de l'ultraviolet et/ou de données hyperspectrales. L'objectif du projet est de cartographier l'ilménite lunaire pour les régions de Mare Australe et de la Mare Ingenii là où sont disponibles les récentes données ultraviolets du capteur Wide Angle Camera (WAC) de Lunar Reconnaissance Orbiter. Pour ce faire, les données du capteur WAC sont intégrées aux données des capteurs UVVIS/NIR de Clementine, généralement utilisées. L'abondance en ilménite est modélisée à l'aide de la théorie du transfert radiatif de Hapke et limitée par le contenu maximal en ilménite calculé à partir des cartes de FeO et Ti02, celles-ci étant dérivées des données des capteurs UV VIS/NIR de Clementine. L'abondance en ilménite est modélisée pour les pixels offrant le meilleur rapport signal/bruit, soit 0,47 % de la région de la Mare Australe et 1,62 % la région de la Mare Ingenii, puis interpolée par krigeage. L'abondance en ilménite modélisée est de 0 à 11,01 % pour la région de la Mare Australe et de 0 à 6,01 % pour la région de la Mare Ingenii. La précision (RMSE) est de t- 2,87 % pour les pixels modélisés. La précision (RMSE) est de ± 3,55 et de ± 3,25 % pour les pixels interpolés de la région de la Mare Australe et la région de la Mare Ingenii respectivement. Pour la première fois, les données de l'ultraviolet sont intégrées aux données du visible au proche infrarouge et un contenu maximal en ilménite est utilisé. Cela permet de cartographier l'ilménite avec précision; la corrélation entre l'abondance en ilménite modélisée et l'abondance réelle en ilménite contenue dans les échantillons lunaires utilisés pour valider le modèle est de 0,88.||Abstract: According to its " Global Exploration Strategy " established in 2009, the Canadian Space Agency wants to map the distribution of ilmenite, an iron and titanium oxide mineral (FeTiO[subscript 3]), on the Moon. Ilmenite is considered a key mineral, because the oxygen it contains can be extracted and could be used for life support and as a propellant in the perspective of human exploration of the Moon. No ilmenite map actually exists because ultraviolet (UV) and/or hyperspectral data necessary for its identification were not available. The objective of this study is to map ilmenite distribution on the Moon, over Mare Australe and Mare Ingenii regions, where recent UV data from the Wide Angle Camera (WAC) onboard Lunar Reconnaissance Orbiter has been released. To do so, we integrate WAC UV data to the widely used Clementine UVVIS/NIR cameras (UV, visible and near-infrared) data. We model ilmenite abundance using Hapke radiative transfer theory and the maximum ilmenite abundance we calculate based on available UVVIS/NIR FeO and TiO[subscript 2] maps. We model ilmenite abundance only for pixel having a high signal-to-noise ratio (0.47 % of Mare Australe region and 1.62 % of Mare Ingenii region) and interpolate the results by kriging. We find that the modeled ilmenite abundances range between 0 and 11.01 % for Mare Australe regions, and between 0 and 6.01 % for Mare Ingenii region. The root mean square error (RMSE) is +/- 2.87 % of ilmenite for the modeled pixels. The root mean square error (RMSE) is +/- 3.55 and +/- 3.25 % of ilmenite for the interpolated values in Mare Australe and Mare Ingenii regions respectively. For the first time, UV data have been integrated to visible and near-infrared data, and a maximum ilmenite content has been used as a constraint in the radiative transfer model. This enable's to obtain an enhanced precision of ilmenite abundances; the correlation between modeled and real ilmenite abundances from Apollo samples used to validate the model is 0,88. [Symboles non conformes]

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/6520
Date January 2013
CreatorsLemelin, Myriam
ContributorsGoïta, Kalifa
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeMémoire
Rights© Myriam Lemelin

Page generated in 0.0024 seconds