Return to search

Recuperação de metais de placas de circuito impresso de computadores obsoletos através de processo biohidrometalúrgico. / Metals recovery from printed circuit boards of obsolete computers by biohydrometallurgical process.

O consumo de produtos eletroeletrônicos, em especial de computadores pessoais, aliado ao avanço tecnológico, diminui a vida útil dos equipamentos a cada geração e o intenso marketing gera um rápido processo de substituição. As placas de circuito impresso são encontradas em praticamente todos os equipamentos eletroeletrônicos e são particularmente problemáticas para reciclar devido à mistura heterogênea de material orgânico, metais e fibra de vidro. As placas de circuito impresso são industrialmente recicladas através de processos hidrometalúrgicos e pirometalúrgicos. A biolixiviação, que é baseada na capacidade de microrganismos solubilizarem metais, pode ser usada para recuperar metais de placas de circuito impresso de computadores. O presente trabalho investigou a recuperação de metais de placas de circuito impresso de computadores obsoletos através de processo biohidrometalúrgico. Para isto, as placas de circuito impresso foram processadas através de cominuição seguida de separações magnética e eletrostática. A bactéria Acidithiobacillus ferrooxidans-LR foi cultivada e adaptada na presença de placas de circuito impresso. Um estudo de frascos agitados foi realizado com amostras do material não-magnético das placas de circuito impresso para avaliar a influência da adaptação bacteriana, densidade de polpa, velocidade de rotação e concentração inicial de Fe+2 sobre o processo de biolixiviação. Lixiviação com sulfato férrico também foi estudada para efeitos de comparação. Os parâmetros analisados foram: pH, Eh, concentração de Fe+2, extração de metais, análises por EDS e MEV. Os resultados da caracterização mostraram que através da separação magnética é possível obter duas frações: material magnético, na qual ficou concentrado o ferro, permitindo sua posterior recuperação, e material não-magnético, na qual ficou concentrado cobre, zinco, alumínio, estanho e ouro. Para a extração de cobre, zinco e alumínio, os resultados do estudo de frascos agitados permitiram a definição das condições: densidade de polpa de 15gL-1, volume de inóculo (bactérias adaptadas) de 10% (v/v), velocidade de rotação de 170rpm, e concentração inicial de Fe+2 de 6,75gL-1. A lixiviação com sulfato férrico extraiu menos de 35% do cobre do que a biolixiviação, porém é um fator contribuinte assim como a lixiviação promovida pelo ácido sulfúrico. Imagens obtidas no MEV mostraram diferenças entre as superfícies das amostras do material não-magnético antes e depois da biolixiviação, evidenciando os pits de corrosão formados pelo contato da bactéria. / Consumption of electric and electronic devices, especially personal computers, coupled with technological advances, decreases equipments lifespan in each generation and intense marketing generates a rapid replacement process. Printed circuit boards are found in all electric and electronic equipment and are particularly problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Printed circuit boards are industrially recycled by hydrometallurgical and/or pyrometallurgical processes. Bioleaching, which is based on microorganisms capacity to dissolve metals into soluble elements, can be used to metal recovery from printed circuit boards of computers. This study investigated metal recovery from printed circuit boards of obsolete computers by biohydrometallurgical process. Printed circuit boards from obsolete computers were processed by size reduction followed by magnetic and electrostatic separation. Bacteria Acidithiobacillus ferrooxidans-LR were grown and adapted in presence of printed circuit board. A shake-flask study was carried out with printed circuit board samples (non-magnetic material). Influence of bacterial adaptation, pulp density, rotation speed and initial Fe+2 concentrations on bioleaching were evaluated. Leaching in acidic ferric sulphate was also performed for comparison purposes. Analyzed parameters were: pH, Eh, ferrous iron concentration, metals extraction, EDS and SEM analysis. Characterization results shown that through magnetic separation, it is possible to obtain two fractions: magnetic material, which concentrated iron; and non-magnetic material, which concentrated copper, zinc, aluminum, tin and gold. Results obtained in the extraction of copper, zinc and aluminum allowed to define optimal conditions of bioleaching: pulp density of 15gL-1, inoculums volume (adapted bacteria) of 10% (v/v), rotation speed of 170rpm, and Fe+2 initial concentration of 6.75gL-1. Ferric iron leaching extracted less copper (35%) than bioleaching, but its a contribute factor as leaching promoted by diluted sulfuric acid. SEM analysis shown surface differences between non-magnetic material before and after bioleaching, showing corrosion pits formed by bacteria contact.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07062013-154359
Date26 April 2012
CreatorsYamane, Luciana Harue
ContributorsTenório, Jorge Alberto Soares
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds