O mercado de tintas e vernizes é um dos maiores demandantes de solventes. Nos últimos anos, a reformulação de sistemas solventes tem ganhado forca, e três são as razões principais para isso: redução de custo, mantendo o desempenho; melhoria do desempenho; e busca por solventes menos agressivos ao homem e a natureza, quer seja voluntariamente ou por imposição de legislação. Dentre as varias propriedades necessárias de um solvente para formulação de tintas e vernizes, a taxa de evaporação e os parâmetros de solubilidade de Hansen são os mais importantes. Em sua grande maioria, os ajustes e substituições de formulação de solventes são realizados pelo método da tentativa e erro, que é caro e demorado. A teoria e modelos sobre os parâmetros de solubilidade já são bastante conhecidos, mas pouco foi explorado sobre modelos para prever a taxa de evaporação de solventes e misturas com base no método do evaporômetro determinado pela ASTM D3539. O objetivo deste trabalho é avaliar os modelos disponíveis em literatura para cálculo da taxa de evaporação de solventes e suas misturas, e por fim, com base em conceitos de otimização e projeto de mistura auxiliado por computador (Computer-Aided Mixture/Blend Design), propor uma metodologia para obter misturas de custo otimizado que satisfaçam as restrições de evaporação e solubilidade. Devido às equações das restrições dos modelos das propriedades, este problema de otimização é classificado como programação não-linear (NLP Non-Linear Programming). Embora os modelos de taxa de evaporação dos solventes e das misturas não apresentem resultados consistentes para todo e qualquer caso, devido a desvios muitas vezes causados pelos solventes de rápida evaporação, estes modelos associados à teoria de solubilidade de Hansen se tornam uma ferramenta de grande importância na formulação de sistemas solventes. Os resultados observados com esta metodologia têm grande concordância com os resultados obtidos experimentalmente. / Paint and coatings are one of the most solvent demanding markets. In recent years, reformulation of solvent systems has gained strength, and there are three main reasons: cost reduction maintaining performance, performance improvement, and the search for less aggressive solvents to human and environment, voluntarily or by legislation. Among several properties required for these solvents, evaporation rate and Hansen solubility parameters are the most important ones. Most adjustments and replacements of solvents in formulation are performed by trial and error methods, which are expensive and time consuming. The solubility parameters theory and models are already well known but little was explored about models to predict solvents and mixtures evaporation rate based on the evaporometer method determined by ASTM D3539. The object of this study is to evaluate the available models for calculating the evaporation rate of solvents and their mixtures, and then, based on optimization concepts and computer-aided Mixture/Blend Design, to propose a methodology to obtain cost-optimized mixtures that meet evaporation and solubility constraints. Due to the equations restrictions of properties models, this optimization problem is classified as NLP - Non-Linear Programming. Although evaporation rate models of solvents and mixtures do not show consistent results for every case most deviations were caused by fast evaporation solvents -, these models associated with the Hansen solubility theory become an important tool in the solvent systems formulation. The results observed with this method have good agreement with experimental results.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08072011-170627 |
Date | 15 April 2011 |
Creators | Venceslau, Emerson Barros |
Contributors | Carrillo Le Roux, Galo Antonio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds