Return to search

Estrutura, termoestabilidade e atividade de xilanases: um estudo via simulação molecular / Structure, thermostability and activity of xylanases: a molecular dynamics study

As xilanases (EC 3.2.1.8), enzimas produzidas por diversos organismos, são capazes de hidrolisar as ligações -1,4 da cadeia principal da xilana, o mais abundante polissacarídeo hemicelulósico da natureza. O grande potencial biotecnológico das xilanases consiste na sua aplicação nas etapas de branqueamento do papel, nas quais a xilana é hidrolisada sob condição de temperatura elevada para facilitar a remoção da lignina (substância responsável pela coloração), diminuindo a quantidade de compostos clorados utilizados nestas etapas. A termoestabilidade e a especificidade pela xilana são as propriedades responsáveis pelo grande interesse biotecnológico e comercial que as xilanases têm atraído. As xilanases mesofílica, XBC, de temperatura ótima 55ºC (produzida pela bactéria Bacillus circulans) e termofílica, XTL, de temperatura ótima 70ºC (produxida pelo fungo Thermomyces lanuginosus) foram estudadas comparativamente por simulação de dinâmica. Os sistemas foram modelados pelo campo de força GROMOS-96(43A1) e as simulações realizadas pelo programa GROMACS 3.2. O objetivo do trabalho é relacionar as diferenças estruturais, energéticas e dinâmicas com as diferentes termostabilidades exibidas por estas enzimas. Os estudos por simulação sugerem claramente a existência de dois grandes tipos de regiões nas enzimas xilanases XBC e XTL: uma conservada e de grande estabilidade, que é o domínio palma, e a outra que pode sofrer grande movimentação, no caso o domínio polegar. Uma movimentação do tipo abre-fecha de dobradiça foi identificada. O monitoramento das ligações de hidrogênio inter/intramoleculares e pontes salinas ao longo do tempo e em função da temperatura permitem explicar clara e detalhadamente as diferentes termoestabilidades exibidas por duas proteínas da mesma família que compartilham de uma estrutura tridimensional altamente semelhante. Foi possível identificar 14 resíduos carregados que estão presentes na XTL e ausentes na XBC, tais resíduos devem ser considerados sítios potenciais de mutação na XBC. De uma maneira geral, tanto na XBC quanto na XTL, a presença do substrato não altera as características de cada domínio/região mas confere estabilidade para o domínio polegar. Nenhuma diferença clara na afinidade pelo substrato foi detectada pelas interações intermoleculares proteína-substrato. / The enzymes xylanases (EC 3.2.1.8) are produced by several microorganisms and used to hydrolyze the -1,4 bonds of the xylan main chain, the most abundant hemicellulose in nature. The great biotechnological potential of the xylanases is due to its application in the pulp-bleaching processes when the xylan is hydrolyzed under high temperature condition to optimize the lignin removal. This procedure presents the advantage to reduce the amount of chlorine chemicals used in the pulp-bleaching process. The required properties of a biotechnologically useful xylanase include thermostability and high affinity for xylan. The mesophilic, XBC, (from Bacillus circulans) and thermophilic, XTL, (from Thermomyces lanuginosus) xylanases were studied by molecular dynamics simulations. The primary structures of these enzymes are almost completely different while the tertiary structures are identical. The objective of the study is to get some insight on the factors that are responsible for the xylanase thermostability. The systems were modeled by the GROMOS96-(43A1) force field and the molecular dynamic simulations were performed by the GROMACS 3.2 package in the temperature range from 25 to 80ºC. The results obtained with both xylanases were compared. The existence of two kinds of regions was identified in XBC and XTL: the first one conserved and highly stable is formed by the so-called palm and fingers domains. The second region exhibits large movements: this is the thumb domain. A kind of open-close motion was identified that maybe can facilitate the access of the xylane to the active center. The inter/intramolecular hydrogen bonds and salt bridges allow to explain at great length the thermostability differences between the two enzymes. It was possible to identify 14 charged residues present in the XTL with no similar in the XBC: such residues must be considered outstanding mutation sites in XBC. In the presence of the substrate, the characteristics of each domain/region are not modified but the stability of the thumb domain is increased. No difference in the affinity for the substrate was detected between the xylanases and it can be suggested that the activation energies are similar. Two water molecules were found in the active site supporting the hydrolysis mechanisms proposed in the literature.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-11092009-133630
Date03 October 2007
CreatorsVieira, Davi Serradella
ContributorsDegreve, Leo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds