Control of Markov Jump Linear Systems with uncertain detections. / Controle de sistemas com saltos markovianos e detecções sujeitas a incertezas.

This monograph addresses control and filtering problems for systems with sudden changes in their behavior and whose changes are detected and estimated by an imperfect detector. More precisely it considers continuous-timeMarkov Jump Linear Systems (MJLS) where the current mode of operation is estimated by a detector. This detector is assumed to be imperfect in the sense that it is possible that the detected mode of operation diverges from the real mode of operation. Furthermore the probabilities for these detections are considered to be known. It is assumed that the detector has its own dynamic, which means that the detected mode of information can change independently from the real mode of operation. The novelty of this approach lies in how uncertainties are modeled. A Hidden Markov Model (HMM) is used to model the uncertainties introduced by the detector. For these systems the following problems are addressed: i) Stochastic Stabilizability in mean-square sense, ii) H2 control, iii) H? control and iv) the H? filtering problem. Solutions based on Linear Matrix Inequalities (LMI) are developed for each of these problems. In case of the H2 control problem, the solutionminimizes an upper bound for the H2 norm of the closed-loop control system. For the H? control problem a solution is presented that minimizes an upper bound for the H? norm of the closed-loop control system. In the case of the H? filtering, the solution presented minimizes the H? norm of a system representing the estimation error. The solutions for the control problems are illustrated using a numerical example modeling a simple two-tank process. / Esta monografia aborda problemas de controle e filtragem em sistemas com saltos espontâneos que alteram seu comportamento e cujas mudanças são detectadas e estimadas por um detector imperfeito. Mais precisamente, consideramos sistemas lineares cujos saltos podem ser modelados usando um processo markoviano (Markov Jump Linear Systems) e cujo modo de operação corrente é estimado por um detector. O detector é considerado imperfeito tendo em vista a possibilidade de divergência entre o modo real de operação e o modo de operação detectado. Ademais, as probabilidades das deteccões são consideradas conhecidas. Assumimos que o detector possui uma dinâmica própria, o que significa que o modo de operação detectado pode mudar independentemente do modo real de operação. A novidade dessa abordagem está na modelagem das incertezas. Um processo oculto de Markov (HMM) é usado para modelar as incertezas introduzidas pelo detector. Para esses sistemas, os seguintes problemas são abordados: i) estabilidade quadrática ii) controle H2, iii) controle H? e iv) o problema da filtragem H?. Soluções baseadas em Desigualdades de Matriciais Lineares (LMI) são desenvolvidas para cada um desses problemas. No caso do problema de controle H2, a solução minimiza um limite superior para a norma H2 do sistema de controle em malha fechada. Para o problema H? -controle é apresentada uma solução que minimiza um limite superior para a norma H? do sistema de controle em malha fechada. No caso da filtragem H?, a solução apresentada minimiza a norma H? de um sistema que representa o erro de estimativa. As soluções para os problemas de controle são ilustradas usando um exemplo numérico que modela um processo simples de dois tanques.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-18072019-103127
Date02 April 2019
CreatorsStadtmann, Frederik
ContributorsCosta, Oswaldo Luiz do Valle
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0022 seconds