Data analysis techniques can be useful in decision-making processes, when patterns of interest can indicate trends in specific domains. Such trends might support evaluation, definition of alternatives, or prediction of events. Currently, datasets have increased in size and complexity, posing challenges to modern hardware resources. In the case of large datasets that can be represented as graphs, issues of visualization and scalable processing are of current concern. Distributed frameworks are commonly used to deal with this data, but the deployment and the management of computational clusters can be complex, demanding technical and financial resources that can be prohibitive in several scenarios. Therefore, it is desirable to design efficient techniques for processing and visualization of large scale graphs that optimize hardware resources in a single computational node. In this course of action, we developed a visualization technique named StructMatrix to find interesting insights on real-life graphs. In addition, we proposed a graph processing framework M-Flash that used a novel, bimodal block processing strategy (BBP) to boost computation speed by minimizing I/O cost. Our results show that our visualization technique allows an efficient and interactive exploration of big graphs and our framework MFlash significantly outperformed all state-of-the-art approaches based on secondary memory. Our contributions have been validated in peer-review events demonstrating the potential of our finding in fostering the analytical possibilities related to large-graph data domains. / Técnicas de análise de dados podem ser úteis em processos de tomada de decisão, quando padrões de interesse indicam tendências em domínios específicos. Tais tendências podem auxiliar a avaliação, a definição de alternativas ou a predição de eventos. Atualmente, os conjuntos de dados têm aumentado em tamanho e complexidade, impondo desafios para recursos modernos de hardware. No caso de grandes conjuntos de dados que podem ser representados como grafos, aspectos de visualização e processamento escalável têm despertado interesse. Arcabouços distribuídos são comumente usados para lidar com esses dados, mas a implantação e o gerenciamento de clusters computacionais podem ser complexos, exigindo recursos técnicos e financeiros que podem ser proibitivos em vários cenários. Portanto é desejável conceber técnicas eficazes para o processamento e visualização de grafos em larga escala que otimizam recursos de hardware em um único nó computacional. Desse modo, este trabalho apresenta uma técnica de visualização chamada StructMatrix para identificar relacionamentos estruturais em grafos reais. Adicionalmente, foi proposta uma estratégia de processamento bimodal em blocos, denominada Bimodal Block Processing (BBP), que minimiza o custo de I/O para melhorar o desempenho do processamento. Essa estratégia foi incorporada a um arcabouço de processamento de grafos denominado M-Flash e desenvolvido durante a realização deste trabalho.Foram conduzidos experimentos a fim de avaliar as técnicas propostas. Os resultados mostraram que a técnica de visualização StructMatrix permitiu uma exploração eficiente e interativa de grandes grafos. Além disso, a avaliação do arcabouço M-Flash apresentou ganhos significativos sobre todas as abordagens baseadas em memória secundária do estado da arte. Ambas as contribuições foram validadas em eventos de revisão por pares, demonstrando o potencial analítico deste trabalho em domínios associados a grafos em larga escala.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-23032016-145752 |
Date | 23 November 2015 |
Creators | Colmenares, Hugo Armando Gualdron |
Contributors | Rodrigues Junior, José Fernando |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0076 seconds