Aspectos de teorias quânticas de gauge a temperatura finita / Thermal Effects in Quantum Gauge Theory at Finite Temperature

Nós trabalhamos em três problemas relacionados com as teorias de gauge a temperatura finita. O primeiro discute a invariância de gauge da massa física do elétron num espaço de dimensão arbitrária a temperatura zero. Obtivemos a massa física a partir do polo do propagador fermiônico e demonstramos que a maneira usual de definir este propagador funciona para gauges covariantes mas não para gauges não covariantes. Em seguida propusemos um novo propagador e verificamos de duas formas diferentes que a massa física obtida a partir deste funciona para um gauge definido com parâmetros de controle tais que ele possa ser generalizado para as duas classes estudadas. O segundo problema é sobre a interação de n fótons num espaço de (1+1) dimensões no limite de altas temperaturas. Usando o formalismo de tempo imaginário e o modelo de Schwinger, mostramos que todos os termos das amplitudes causais retardadas com um ou mais loops têm contribuição nula. Interpretamos fisicamente este resultado e fizemos um paralelo de como ele se relaciona com a invariância CPT da teoria. A última parte é relacionada à gravitação quântica em (3+1) dimensões. Discutimos a possibilidade de obtermos as funções de n grávitons 1PI nos limites estático e de comprimento de onda longo em função de polinômios que podem ser escritos e relacionados de uma maneira simples. Para tanto, usamos as identidades de Ward e a invariância de Weyl de forma a relacionar as funções de n e (n+1) grávitons. Em seguida, utilizamos o formalismo da equação de transporte de Boltzmann para compreender melhor os resultados. / We have worked in three problems related to finite temperature gauge theory. The first one discusses the gauge invariance of the electron physical mass in an arbitrary dimension space at zero temperature. We have obtained the physical mass from the pole of the fermion propagator and we have demonstrated that the usual form to define this propagator works well for covariant gauges, but not for non covariant gauges. Then, we have proposed anew fermion propagator and we verified in two different ways that the physical mass obtained from this new one works for a gauge defined with control parameters so that it could be generalized for both classes studied. The second problem is on the n photon interaction in a space with (1+1) dimensions at hard thermal loops. Using the imaginary time formalism and the Schwinger\'s model, we have shown that all terms of the retarded causal amplitudes with one or more loops have null contribution. We have got a physical interpretation of this result and we have done a parallel of how it relates with the CPT invariance of this theory. The last one is related with quantum gravitation in (3+1) dimensions. We have discussed the possibility to obtain the 1PI n graviton functions in static and long-wavelength limits from polynomials which could be written and related in a simple manner. To this end, we used the Ward identities and the Weyl invariance to relate the n and (n+1) graviton functions. Then, we used the Boltzmann transport equation formalism to get a better understanding of the results.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29112014-182637
Date26 August 2014
CreatorsFrancisco, Rafael Rodrigues
ContributorsFrenkel, Josif
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.1684 seconds