Return to search

Plasmon hybridization for enhanced nonlinear optical response

The linear and nonlinear optical response of plasmon hybridized systems is the subject of study of this thesis. Plasmonic silver nanoprisms are able to confine light to a sub-wavelength volume, which provides local field enhancement. This confined field is promising for achieving an enhanced nonlinear optical response. For many of plasmon nanoparticles, however, the plasmonic resonance is not at the near-infrared wavelengths of a Ti:Sapphire laser, the most common source used for ultra-fast measurements. To achieve resonance at these wavelengths, a tuning mechanism is required.
The plasmon hybridization between silver nanoprisms and a thin gold film provides this tuning mechanism, which allows for enhanced optical second harmonic generation. Overlapping the plasmon resonance of the system with excitation source, by varying the spacer layer between the nanoprisms and the gold film, enhances the second harmonic counts by approximately three orders of magnitude. The finite-difference time-domain calculations agree to within a factor of two with the experimental findings in terms of the predicted enhancement factor. This plasmon hybridization approach is promising for future applications, including enhanced multi-photon lithography and nonlinear sensing using metal nanoparticles. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/4391
Date20 December 2012
CreatorsHajisalem, Ghazal
ContributorsGordon, Reuven
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0017 seconds