Return to search

ARTERIAL WAVEFORM MEASUREMENT USING A PIEZOELECTRIC SENSOR

This study aims to develop a new method to monitor peripheral arterial pulse using a PVDF piezoelectric sensor. After comparing different locations of sensor placement, a specific sensor wrap for the finger was developed. Its composition, size, and location make it inexpensive and very convenient to use. In order to monitor the effectiveness of the sensor at producing a reliable pulse waveform, a monitoring system, including the PZT sensor, ECG, pulse-oximeter, respiratory sensor, and accelerometer was setup. Signal analysis from the system helped discover that the PZT waveform is relative to the 1st derivative of the artery pressure wave. Also, the system helped discover that the first, second, and third peaks in PZT waveform represent the pulse peak, inflection point, and dicrotic notch respectively. The relationship between PZT wave and respiration was also analyzed, and, consequently, an algorithm to derive respiratory rate directly from the PZT waveform was developed. This algorithm gave a 96% estimating accuracy. Another feature of the sensor is that by analyzing the relationship between pulse peak amplitude and blood pressure change, temporal artery blood pressure can be predicted during Valsalva maneuver. PZT pulse wave monitoring offers a new type of pulse waveform which is not yet fully understood. Future studies will lead to a more broadly applied use of PZT sensors in cardiac monitoring applications.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1125
Date09 August 2010
CreatorsZhang, Ruizhi
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0022 seconds