Return to search

THE DESIGN AND VALIDATION OF A COMPUTATIONAL MODEL OF THE HUMAN WRIST JOINT

Advancements in computational capabilities have allowed researchers to turn towards modeling as an efficient tool to replicate and predict outcomes of complex systems. Computational models of the musculoskeletal system have gone through various iterations with early versions employing dramatic simplifications. In this work, a three-dimensional computational model of the wrist joint was developed. It accurately recreated the skeletal structures of the hand and wrist and represented the constraints imposed by soft tissue structures like ligaments, tendons, and other surrounding tissues. It was developed to function as a tool to investigate the biomechanical contributions of structures and the kinematic response of the wrist joint. The model was created with the use of a commercially available computer-aided design software employing the rigid body modeling methodology. It was validated against three different cadaveric experimental studies which investigated changes in biomechanical response following radioscapholunate fusion and proximal row carpectomy procedures. The kinematic simulations performed by the model demonstrated quantitatively accurate responses for the range of motions for both surgical procedures. It also provided some understanding to the trends in carpal bone contact force changes observed in surgically altered specimens. The model provided additional insight into the importance of structures like the triangular fibrocartilage and the capsular retinacular structures, both of which are currently not very well understood. As better understanding of components of the wrist joint is achieved, this model could function as an important tool in preoperative planning and generating individualized treatment regiments.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4057
Date07 May 2013
CreatorsMir, Afsarul
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.002 seconds