Return to search

Understanding and Design of an Arduino-based PID Controller

This thesis presents research and design of a Proportional, Integral, and Derivative (PID) controller that uses a microcontroller (Arduino) platform. The research part discusses the structure of a PID algorithm with some motivating work already performed with the Arduino-based PID controller from various fields. An inexpensive Arduino-based PID controller designed in the laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric cooler, and electronic components while the software portion includes C/C++ programming. The PID parameters for a particular controller are found manually. The role of different PID parameters is discussed with the subsequent comparison between different modes of PID controllers. The designed system can effectively measure the temperature with an error of ± 0.6℃ while a stable temperature control with only slight deviation from the desired value (setpoint) is achieved. The designed system and concepts learned from the control system serve in pursuing inexpensive and precise ways to control physical parameters within a desired range in our laboratory.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5737
Date01 January 2016
CreatorsBista, Dinesh
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0058 seconds