Return to search

Evaluation of an Elliptical Trainer with Distal Control Modifications

Currently, gait rehabilitation for gait deviations associated with stroke has focused on task-specific repetitive rehabilitation techniques. Body weight supported treadmill training has been used to administer this type of rehabilitation but is labor intensive for therapists. To alleviate the burden on therapists, mechanized or robotic gait trainers have been used to elicit gait-like movements. This study is focused on evaluating an elliptical trainer that was modified to provide an ankle articulation pattern similar to that found in normal gait. The kinematic, kinetic, and metabolic effect of the modifications on normal subjects was evaluated. Eight healthy adult subjects (4 male, 4 female; mean age 28.6 ± 5.2) participated in this research. Subjects were asked to ambulate on the elliptical trainer with and without the modifications at two metronome-paced speeds (1Hz and 1.5Hz). Video-based motion analysis techniques were used to collect sagittal plane kinematic data at a rate of 30 Hz. Reflective markers were placed over the acromion, greater trochanter, fibular head, lateral malleolus, heel, and fifth metatarsal. Metabolic Energy – The rate of energy consumption (VO2 consumption and VCO2 production) was measured using ventilatory expired gas analysis (SensorMedics, Yorba Linda, CA). The articulation of the footplate on the modified elliptical trainer correlated with the foot movement seen in normal ambulation (r2=0.89). It was found that for the ankle and knee, the joint angles while ambulating on the modified elliptical trainer correlated better to normal gait than the non-modified elliptical trainer. However, the hip angles were found to correlate worse. This suggests that the ankle articulation was successful, but the distal control was not as effective as expected. Kinetic energy was found to not be significantly different between the modified elliptical trainer and the non-modified elliptical trainer. Metabolic energy was found to be statistically higher on the modified elliptical trainer (p=0.001). This may suggests that there is co-contraction of muscles around joints. Further study using electromyography may provide further insight on the difference seen in metabolic energy consumption.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd_retro-1149
Date01 January 2006
CreatorsBradford, Jessica Cortney
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceRetrospective ETD Collection
Rights© The Author

Page generated in 0.0019 seconds