Return to search

A general theory of electron detachment in negative ion collisions

In this thesis a general theory of electron detachment in slow collisions of negative ions with atoms is presented. The theory is based upon a semiclassical close-coupling framework, following the work of Taylor and Delos. The Schrodinger equation is reduced, under certain assumptions, to a non-denumerably infinite set of coupled equations. We develop a new method for solving these equations that is more general than the methods used by Taylor and Delos. A zero-order approximation of our solution is applied to the case of H('-)(D('-)) on Ne collisions, the results are compared with the experimental data, and we find good agreement between theory and experiment, particularly with regard to the isotope effect. A first-order approximation of the solution is proved to be very close to the exact solution, and it is applied to the case of H('-)(D('-)) on He collisions. We use quadratic and quartic approximations for the energy gap (DELTA)(t) to calculate, among other things, the survival probability and electron energy spectrum. There are some interesting results for the electron energy spectrum which have not yet been observed in experiments.

Identiferoai:union.ndltd.org:wm.edu/oai:scholarworks.wm.edu:etd-3606
Date01 January 1983
CreatorsWang, Tzuu-Shin
PublisherW&M ScholarWorks
Source SetsWilliam and Mary
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations, Theses, and Masters Projects
Rights© The Author

Page generated in 0.002 seconds