Spelling suggestions: "subject:"< br /> superconductivity"" "subject:"< br /> uperconductivity""
1 |
Transport thermo-électrique dans les systèmes mésoscopiques desordonnésFerone, Raffaello 18 April 2006 (has links) (PDF)
La théorie de Landau des liquides de Fermi prévoit que la charge et la chaleur sont transportées par les mêmes objets: les quasi-particules fermionics de Landau. De façon très général, ceci est vrai, si l'écrantage parmi les particules dans le système est assez fort pour pouvoir continuer à considérer le système comme composé de particules indépendantes. C'est le cas, par exemple, pour la mer d'électrons dans un métal ordinaire. L'existence d'un même responsable pour le transport de la charge et de la chaleur est exprimé par la lois de Wiedemann-Franz (WF) qui affirme que le rapport entre la conductivité thermique et électrique dépend de la température par une constante qui est plus au moins la même pour plusieurs métaux. La constante de proportionnalité est appelé nombre de Lorenz. <br /> Que se passe-t-il si les conditions concernant l'écrantage que nous avons mentionnées ne sont plus satisfaites, comme par exemple dans les systèmes à dimensionalité réduite, ou des système à basse densité électronique? <br /> Le travail de thèse est divisé en deux parties. Dans la première partie, nous avons étudié le transport thermique et électrique dans un fil quantique désordonné; dans la deuxième, l'influence des fluctuations supraconductives sur la conductivité thermique dans un métal granulaire.<br /><br /> -)Fils Quantiques: <br /><br /> Généralement, on appelle fil quantique un conducteur uni-dimensionel. Aujourd'hui, il est possible de réaliser des conducteurs qui présentent de très forts potentielles de confinement le long de un ou deux des dimensions linéaire. En particulier, les fils quantiques se comportent comme des véritables guides d'onde pour les électrons car ils peuvent avoirs des diamètres qui sont comparable à la longueur d'onde de Fermi. <br /> A cause de la basse dimensionalité, des tels systèmes sont étudiés dans le contexte de la théorie des liquides de Luttinger qui permet de bien prendre en compte les effets d'interaction parmi les particules. <br /> Pour un fil quantique propre connecté à deux réservoirs, la conductance électrique n'est pas renormalisée, alors que celle thermique l'est fortement à cause de la présence des connexions aux réservoirs. La présence d'un faible désordre renormalise aussi la conductance électrique. Ceci était déjà connu. <br /> Nous avons évalué la renormalisation due aux impuretés pour la conductance thermique. Cela nous a permis de pouvoir évaluer la correction au nombre de Lorenz. <br /> A très basses températures, la correction est nulle, alors que à hautes température elle ne l'est jamais. Nous pouvons affirmer qu'un fil quantique avec impuretés n'est pas dans un état type liquide de Fermi.<br /><br /> -) Métaux Granulaires: <br /> <br /> Dans un métal normal en présence d' interactions de type BCS, les électrons peuvent former des pairs de Cooper même à une température plus élevé que la température critique. Dans ce cas, les propriétés de transport du métal normal se mélangent avec celle de l'état supraconducteur. Cela donne lieu à des contributions qui déterminent le transport de la charge et de l'énergie. <br /> Notamment, sont trois les termes qui contribuent: la contribution Aslamazov -Larkin (AL), la contribution Maki-Thomson (MT), et la contribution Densité d'état (DOS). <br /> La première prend en compte la facilité des électrons formants un pair de Cooper à se propager à travers le système. Cette contribution est aussi appelé paraconductivité; les électrons formants des pairs de Cooper ne sont plus disponibles pour le transport à une seul particule. Cela est pris en compte par la contribution DOS. Le terme MT prend en compte la diffusion cohérent des électrons formants un pair de Cooper sur la même impureté.<br /> Pour un système massif, il a été démontré que les contributions DOS et MT se compense exactement. Il ne reste que le terme AL qui n'est pas singulier dans la température. <br /> Un métal granulaire peut être considéré comme un ensemble D-dimensionel the grains metallics plongé dans un milieux isolant. Les grains communiquent entre eux par effet tunnel.<br /> C'est raisonnable imaginer que la présence de l'effet tunnel renormalise les propriétés de transport. En effet, un comportement dépendant de la température émerge. Les contributions AL et MT sont d'ordre supérieur par rapport au terme DOS.<br /> On peut distinguer deux régions différentes: loin et près de la température critique. Loin de la température critique, le tunneling parmi les grains n'est pas efficace, et la structure granulaire l'emporte; une suppression de la correction à la conductivité thermique est retrouvée. Près de la température critique, le tunneling est efficace est la structure massive est retrouvée. Le signe de la correction n'est pas défini de manière univoque. Il dépend de la transparence de la barrière et de la compétition parmi les différentes contributions.<br /> Dans les deus différents régimes, la lois de WF est violée.
|
Page generated in 0.1221 seconds