• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gestion de l'incertitude pour l'optimisation de systèmes interactifs / Dealing with uncertainty to optimise interactive systems

Daubigney, Lucie 01 October 2013 (has links)
Le sujet des travaux concerne l'amélioration du comportement des machines dites \og intelligentes\fg, c'est-à-dire capables de s'adapter à leur environnement, même lorsque celui-ci évolue. Un des domaines concerné est celui des interactions homme-machine. La machine doit alors gérer différents types d'incertitude pour agir de façon appropriée. D'abord, elle doit pouvoir prendre en compte les variations de comportements entre les utilisateurs et le fait que le comportement peut varier d'une utilisation à l'autre en fonction de l'habitude à interagir avec le système. De plus, la machine doit s'adapter à l'utilisateur même si les moyens de communication entre lui et la machine sont bruités. L'objectif est alors de gérer ces incertitudes pour exhiber un comportement cohérent. Ce dernier se définit comme la suite de décisions successives que la machine doit effectuer afin de parvenir à l'objectif fixé. Une manière habituelle pour gérer les incertitudes passe par l'introduction de modèles : modèles de l'utilisateur, de la tâche, ou encore de la décision. Un inconvénient de cette méthode réside dans le fait qu'une connaissance experte liée au domaine concerné est nécessaire à la définition des modèles. Si l'introduction d'une méthode d'apprentissage automatique, l'apprentissage par renforcement a permis d'éviter une modélisation de la décision \textit{ad hoc} au problème concerné, des connaissances expertes restent toutefois nécessaires. La thèse défendue par ces travaux est que certaines contraintes liées à l'expertise humaine peuvent être relaxées tout en limitant la perte de généricité liée à l'introduction de modèles / The behaviour of machines is difficult to define, especially when machines have to adapt to a changing environment. For example, this is the case when human-machine interactions are concerned. Indeed, the machine has to deal with several sources of uncertainty to exhibit a consistent behaviour to the user. First, it has to deal with the different behaviours of the users and also with a change in the behaviour of a user when he gets used to the machine. Secondly, the communication between the user and the machine can be noisy, which makes the transfer of information more complicated. The objective is thus to deal with the different sources of uncertainty to show a consistent behaviour. Usually, dealing with uncertainties is performed by introducing models : models of the users, the task concerned or the decision. However, the accuracy of the solution depends on the accuracy of expert knowledge used to build the models. If machine learning, through reinforcement learning, has successfully avoided the use of model for the decision and removed \textit{ad hoc} knowledge about it, expert knowledge is still necessary. The thesis presented in this work is that some constraints related to human expertise can be slackened without a loss of generality related to the introduction of models

Page generated in 0.0272 seconds