• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Near-Group Categories

Siehler, Jacob A. 23 April 2003 (has links)
We consider the possibility of semisimple tensor categories whose fusion rule includes exactly one noninvertible simple object, so-called near-group categories. Data describing the fusion rule is reduced to an abelian group G and a nonnegative integer k. Conditions are given, in terms of G and k, for the existence or nonexistence of coherent associative structures for such fusion rules (ie, solutions to MacLane's pentagon equation). An explicit construction of matrix solutions to the pentagon equations is given for the cases where we establish existence, and classification of the distinct solutions is carried out partially. Many of these associative structures also support (braided) commutative and tortile structures and we indicate when the additional structures are possible. Small examples are presented in detail suitable for use in computational applications. / Ph. D.
2

Loop Spaces and Iterated Higher Dimensional Enrichment

Forcey, Stefan Andrew 27 April 2004 (has links)
There is an ongoing massive effort by many researchers to link category theory and geometry, especially homotopy coherence and categorical coherence. This constitutes just a part of the broad undertaking known as categorification as described by Baez and Dolan. This effort has as a partial goal that of understanding the categories and functors that correspond to loop spaces and their associated topological functors. Progress towards this goal has been advanced greatly by the recent work of Balteanu, Fiedorowicz, Schwänzl, and Vogt who show a direct correspondence between k–fold monoidal categories and k–fold loop spaces through the categorical nerve. This thesis pursues the hints of a categorical delooping that are suggested when enrichment is iterated. At each stage of successive enrichments, the number of monoidal products seems to decrease and the categorical dimension to increase, both by one. This is mirrored by topology. When we consider the loop space of a topological space, we see that paths (or 1–cells) in the original are now points (or objects) in the derived space. There is also automatically a product structure on the points in the derived space, where multiplication is given by concatenation of loops. Delooping is the inverse functor here, and thus involves shifting objects to the status of 1–cells and decreasing the number of ways to multiply. Enriching over the category of categories enriched over a monoidal category is defined, for the case of symmetric categories, in the paper on A∞–categories by Lyubashenko. It seems that it is a good idea to generalize his definition first to the case of an iterated monoidal base category and then to define V–(n + 1)–categories as categories enriched over V–n–Cat, the (k−n)–fold monoidal strict (n+1)–category of V–n–categories where k<n ∈ N. We show that for V k–fold monoidal the structure of a (k−n)–fold monoidal strict (n + 1)–category is possessed by V–n–Cat. / Ph. D.
3

A Plethysm Formulation for Operadic Structures and its Relationship to the Plus Construction

Michael Monaco (18429858) 25 April 2024 (has links)
<p dir="ltr">We first introduce several families of monoidal categories with plethysm products as their monoidal products and use this to describe operadic structures as plethysm monoids. In order to link this approach with the classical theory, we give a generalization of the Baez-Dolan plus construction. We then show that an operadic structure can be defined as a plethysm monoid if its associated Feynman category is a plus construction of a unique factorization category.</p>
4

Categories of Mackey functors

Panchadcharam, Elango January 2007 (has links)
Thesis by publication. / Thesis (PhD)--Macquarie University (Division of Information & Communication Sciences, Dept. of Mathematics), 2007. / Bibliography: p. 119-123. / Introduction -- Mackey functors on compact closed categories -- Lax braidings and the lax centre -- On centres and lax centres for promonoidal catagories -- Pullback and finite coproduct preserving functors between categories of permutation representations -- Conclusion. / This thesis studies the theory of Mackey functors as an application of enriched category theory and highlights the notions of lax braiding and lax centre for monoidal categories and more generally promonoidal categories ... The third contribution of this thesis is the study of functors between categories of permutation representations. / x,123 p. ill
5

The abstract structure of quantum algorithms

Zeng, William J. January 2015 (has links)
Quantum information brings together theories of physics and computer science. This synthesis challenges the basic intuitions of both fields. In this thesis, we show that adopting a unified and general language for process theories advances foundations and practical applications of quantum information. Our first set of results analyze quantum algorithms with a process theoretic structure. We contribute new constructions of the Fourier transform and Pontryagin duality in dagger symmetric monoidal categories. We then use this setting to study generalized unitary oracles and give a new quantum blackbox algorithm for the identification of group homomorphisms, solving the GROUPHOMID problem. In the remaining section, we construct a novel model of quantum blackbox algorithms in non-deterministic classical computation. Our second set of results concerns quantum foundations. We complete work begun by Coecke et al., definitively connecting the Mermin non-locality of a process theory with a simple algebraic condition on that theory's phase groups. This result allows us to offer new experimental tests for Mermin non-locality and new protocols for quantum secret sharing. In our final chapter, we exploit the shared process theoretic structure of quantum information and distributional compositional linguistics. We propose a quantum algorithm adapted from Weibe et al. to classify sentences by meaning. The clarity of the process theoretic setting allows us to recover a speedup that is lost in the naive application of the algorithm. The main mathematical tools used in this thesis are group theory (esp. Fourier theory on finite groups), monoidal category theory, and categorical algebra.
6

The Elliptic Hall Algebra and the Quantum Heisenberg Category

Mousaaid, Youssef 04 October 2022 (has links)
We define the affinization of an arbitrary monoidal category C, corresponding to the category of C-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to C. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When C is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic. We then use the affinization to show our main result, which is an explicit isomorphism between the central charge k reduction of the universal central extension of the elliptic Hall algebra and the trace, or zeroth Hochschild homology, of the quantum Heisenberg category of central charge k. We use this isomorphism to construct large families of representations of the universal extension of the elliptic Hall algebra.
7

String diagram rewriting : applications in category and proof theory / Réécriture des diagrammes : applications à la théorie des catégories et à la théorie de la démonstration

Acclavio, Matteo 14 December 2016 (has links)
Dans le dernier siècle, nombreux sciences ont enrichi leur syntaxe pour pouvoir modeler des interactions. Entre eux on peut compter l'informatique, la physique quantique, et aussi la biologie et l’économie : toutes ces sciences sont des exemples de domaines qui ont besoin d'une syntaxe et d'une sémantique soit pour la concurrence que pour la séquentialité.Les diagrammes des cordes sont bien adapté à cet effet. Dans leur syntaxe on peut retrouver deux compositions : une composition parallèle et une composition séquentielle, qui peuvent interagir à travers une loi d'interchange. Si on considère cette loi comme une égalité, les diagrammes de cordes sont une syntaxe pour les catégories monoidales strictes, avec une représentation graphique plus intuitive que les formules algébriques traditionnelles.Dans cette thèse, on étude cette syntaxe de dimension 2 et sa sémantique. On considéré la réécriture des diagrammes et on donne des applications de cet méthode :- une preuve détaillée du théorème de cohérence de MacLanes pour les catégories monoidales symétriques basée sur un système de réécriture convergent donnée en arXiv:1606.01722;;- une interprétation des dérivations de preuves avec les diagrammes de preuve pour le fragment MELL de la logique linéaire, qui capture l’équivalence de preuves. On peut vérifier la séquentialité en temps linéaire, c'est à dire vérifier si un diagramme corresponds à une preuve. Cette interprétation est une extension de celle pour le fragment MLL donnée en arXiv:1606.09016 en donnant aussi un résultat de élimination du coupure. / In the last century, several sciences enriched their syntax in order to model interactions.Not only computer science and quantum physics, but also biology and economicsare examples of fields requiring syntax and semantics for concurrency as wellas for sequentiality.String diagrams are suitable for that purpose. In that syntax, we have two compositions:the parallel one and the sequential one, which may interact by the interchangerule. If we consider this rule as an equality, string diagrams are a syntax for strictmonoidal categories, with a more intuitive graphical representation than traditionalalgebraic formulas.In this thesis, we study this 2-dimensional syntax and its semantics. We considerdiagram rewriting and we give two applications of those methods:• a detailed proof of Mac Lane’s coherence theorem for symmetric monoidal categoriesbased on convergent diagram rewriting, which is given in arXiv:1606.01722;• an interpretation of proof derivations by string diagrams for the MELL fragmentof linear logic, which captures proof equivalence. We get a linear sequentializabilitytest to verify if a diagram corresponds to a proof . This interpretationextends the one for the MLL fragment given in arXiv:1606.09016,providing also a cut-elimination result.
8

Characterization of Unitary Braided-Enriched Monoidal Categories

Dell, Zachary Ryan 07 December 2022 (has links)
No description available.
9

Braided Hopf algebras, double constructions, and applications

Laugwitz, Robert January 2015 (has links)
This thesis contains four related papers which study different aspects of double constructions for braided Hopf algebras. The main result is a categorical action of a braided version of the Drinfeld center on a Heisenberg analogue, called the Hopf center. Moreover, an application of this action to the representation theory of rational Cherednik algebras is considered. Chapter 1 : In this chapter, the Drinfeld center of a monoidal category is generalized to a class of mixed Drinfeld centers. This gives a unified picture for the Drinfeld center and a natural Heisenberg analogue. Further, there is an action of the former on the latter. This picture is translated to a description in terms of Yetter-Drinfeld and Hopf modules over quasi-bialgebras in a braided monoidal category. Via braided reconstruction theory, intrinsic definitions of braided Drinfeld and Heisenberg doubles are obtained, together with a generalization of the result of Lu (1994) that the Heisenberg double is a 2-cocycle twist of the Drinfeld double for general braided Hopf algebras. Chapter 2 : In this chapter, we present an approach to the definition of multiparameter quantum groups by studying Hopf algebras with triangular decomposition. Classifying all of these Hopf algebras which are of what we call weakly separable type, we obtain a class of pointed Hopf algebras which can be viewed as natural generalizations of multiparameter deformations of universal enveloping algebras of Lie algebras. These Hopf algebras are instances of a new version of braided Drinfeld doubles, which we call asymmetric braided Drinfeld doubles. This is a generalization of an earlier result by Benkart and Witherspoon (2004) who showed that two-parameter quantum groups are Drinfeld doubles. It is possible to recover a Lie algebra from these doubles in the case where the group is free and the parameters are generic. The Lie algebras arising are generated by Lie subalgebras isomorphic to sl2. Chapter 3 : The universal enveloping algebra <i>U</i>(tr<sub>n</sub>) of a Lie algebra associated to the classical Yang-Baxter equation was introduced in 2006 by Bartholdi-Enriquez-Etingof-Rains where it was shown to be Koszul. This algebra appears as the A<sub><i>n</i>-1</sub> case in a general class of braided Hopf algebras in work of Bazlov-Berenstein (2009) for any complex reection group. In this chapter, we show that the algebras corresponding to the series <i>B<sub>n</sub></i> and <i>D<sub>n</sub></i>, which are again universal enveloping algebras, are Koszul. This is done by constructing a PBW-basis for the quadratic dual. We further show how results of Bazlov-Berenstein can be used to produce pairs of adjoint functors between categories of rational Cherednik algebra representations of different rank and type for the classical series of Coxeter groups. Chapter 4 : Quantum groups can be understood as braided Drinfeld doubles over the group algebra of a lattice. The main objects of this chapter are certain braided Drinfeld doubles over the Drinfeld double of an irreducible complex reflection group. We argue that these algebras are analogues of the Drinfeld-Jimbo quantum enveloping algebras in a setting relevant for rational Cherednik algebra. This analogy manifests itself in terms of categorical actions, related to the general Drinfeld-Heisenberg double picture developed in Chapter 2, using embeddings of Bazlov and Berenstein (2009). In particular, this work provides a class of quasitriangular Hopf algebras associated to any complex reflection group which are in some cases finite-dimensional.
10

Intégrale de Kontsevich elliptique et enchevêtrements en genre supérieur / Elliptic Kontsevich integral, and higher genus tangles

Humbert, Philippe 11 December 2012 (has links)
Dans cette thèse, on définit un invariant fonctoriel d'enchevêtrements dans le tore épaissi qui généralise l'intégrale de Kontsevich. Cet invariant est tout d'abord construit analytiquement à partir d'une version universelle de la connexion de Knizhnik-Zamolodchikov-Bernard elliptique. On donne ensuite une version combinatoire de sa construction, basée sur la notion d' « associateur elliptique » introduite par Enriquez. L'outil principal de cette dernière construction est un théorème qui caractérise la catégorie des enchevêtrements en genre quelconque par une propriété universelle exprimée dans le langage des catégories tensorielles. / We construct a functorial invariant of tangles embedded in the thickened torus. This invariant generalizes the Kontsevich integral, and can be analytically derivated from a universal version of the elliptic Knizhnik-Zamolodchikov-Bernard equation. The main part of the thesis is devoted to the combinatorial version of its construction, using the notion of « elliptic associator » introduced by Enriquez. A key ingredient is a universal property satisfied by the category of framed tangles in the torus. This universal property is established in the language of monoidal categories, and extends Reshetikhin-Turaev-Shum's coherence theorem to the case of framed tangles in any closed genus g surface.

Page generated in 0.0819 seconds