• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Affine Oriented Frobenius Brauer Categories and General Linear Lie Superalgebras

McSween, Alexandra 29 June 2021 (has links)
To any Frobenius superalgebra A we associate an oriented Frobenius Brauer category and an affine oriented Frobenius Brauer categeory. We define natural actions of these categories on categories of supermodules for general linear Lie superalgebras gl_m|n(A) with entries in A. These actions generalize those on module categories for general linear Lie superalgebras and queer Lie superalgebras, which correspond to the cases where A is the ground field and the two-dimensional Clifford superalgebra, respectively. We include background on monoidal supercategories and Frobenius superalgebras and discuss some possible further directions.
2

Frobenius Brauer Categories

Samchuck-Schnarch, Saima 16 August 2022 (has links)
Given a symmetric Frobenius superalgebra A equipped with a compatible involution, we define the associated Frobenius Brauer category B(A) and affine Frobenius Brauer category AB(A), generalizing the plain Brauer category B and affine Brauer category AB. We define the orthosymplectic Lie superalgebra osp m|2n(A) and a functor from B(A) to osp m|2n(A)-mod, the category of supermodules over osp m|2n(A). We also define a functor from AB(A) to the endofunctor supercategory of osp m|2n(A)-mod.We prove that these two functors are well-defined and use the former functor to prove a basis result for B(A, δ), a specialized version of B(A). Prior to defining these categories and functors, we provide the background information on super-mathematics and Frobenius superalgebras needed to understand the new results.
3

The Elliptic Hall Algebra and the Quantum Heisenberg Category

Mousaaid, Youssef 04 October 2022 (has links)
We define the affinization of an arbitrary monoidal category C, corresponding to the category of C-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to C. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When C is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic. We then use the affinization to show our main result, which is an explicit isomorphism between the central charge k reduction of the universal central extension of the elliptic Hall algebra and the trace, or zeroth Hochschild homology, of the quantum Heisenberg category of central charge k. We use this isomorphism to construct large families of representations of the universal extension of the elliptic Hall algebra.
4

String diagram rewriting : applications in category and proof theory / Réécriture des diagrammes : applications à la théorie des catégories et à la théorie de la démonstration

Acclavio, Matteo 14 December 2016 (has links)
Dans le dernier siècle, nombreux sciences ont enrichi leur syntaxe pour pouvoir modeler des interactions. Entre eux on peut compter l'informatique, la physique quantique, et aussi la biologie et l’économie : toutes ces sciences sont des exemples de domaines qui ont besoin d'une syntaxe et d'une sémantique soit pour la concurrence que pour la séquentialité.Les diagrammes des cordes sont bien adapté à cet effet. Dans leur syntaxe on peut retrouver deux compositions : une composition parallèle et une composition séquentielle, qui peuvent interagir à travers une loi d'interchange. Si on considère cette loi comme une égalité, les diagrammes de cordes sont une syntaxe pour les catégories monoidales strictes, avec une représentation graphique plus intuitive que les formules algébriques traditionnelles.Dans cette thèse, on étude cette syntaxe de dimension 2 et sa sémantique. On considéré la réécriture des diagrammes et on donne des applications de cet méthode :- une preuve détaillée du théorème de cohérence de MacLanes pour les catégories monoidales symétriques basée sur un système de réécriture convergent donnée en arXiv:1606.01722;;- une interprétation des dérivations de preuves avec les diagrammes de preuve pour le fragment MELL de la logique linéaire, qui capture l’équivalence de preuves. On peut vérifier la séquentialité en temps linéaire, c'est à dire vérifier si un diagramme corresponds à une preuve. Cette interprétation est une extension de celle pour le fragment MLL donnée en arXiv:1606.09016 en donnant aussi un résultat de élimination du coupure. / In the last century, several sciences enriched their syntax in order to model interactions.Not only computer science and quantum physics, but also biology and economicsare examples of fields requiring syntax and semantics for concurrency as wellas for sequentiality.String diagrams are suitable for that purpose. In that syntax, we have two compositions:the parallel one and the sequential one, which may interact by the interchangerule. If we consider this rule as an equality, string diagrams are a syntax for strictmonoidal categories, with a more intuitive graphical representation than traditionalalgebraic formulas.In this thesis, we study this 2-dimensional syntax and its semantics. We considerdiagram rewriting and we give two applications of those methods:• a detailed proof of Mac Lane’s coherence theorem for symmetric monoidal categoriesbased on convergent diagram rewriting, which is given in arXiv:1606.01722;• an interpretation of proof derivations by string diagrams for the MELL fragmentof linear logic, which captures proof equivalence. We get a linear sequentializabilitytest to verify if a diagram corresponds to a proof . This interpretationextends the one for the MLL fragment given in arXiv:1606.09016,providing also a cut-elimination result.
5

The algebra of entanglement and the geometry of composition

Hadzihasanovic, Amar January 2017 (has links)
String diagrams turn algebraic equations into topological moves that have recurring shapes, involving the sliding of one diagram past another. We individuate, at the root of this fact, the dual nature of polygraphs as presentations of higher algebraic theories, and as combinatorial descriptions of "directed spaces". Operations of polygraphs modelled on operations of topological spaces are used as the foundation of a compositional universal algebra, where sliding moves arise from tensor products of polygraphs. We reconstruct several higher algebraic theories in this framework. In this regard, the standard formalism of polygraphs has some technical problems. We propose a notion of regular polygraph, barring cell boundaries that are not homeomorphic to a disk of the appropriate dimension. We define a category of non-degenerate shapes, and show how to calculate their tensor products. Then, we introduce a notion of weak unit to recover weakly degenerate boundaries in low dimensions, and prove that the existence of weak units is equivalent to a representability property. We then turn to applications of diagrammatic algebra to quantum theory. We re-evaluate the category of Hilbert spaces from the perspective of categorical universal algebra, which leads to a bicategorical refinement. Then, we focus on the axiomatics of fragments of quantum theory, and present the ZW calculus, the first complete diagrammatic axiomatisation of the theory of qubits. The ZW calculus has several advantages over ZX calculi, including a computationally meaningful normal form, and a fragment whose diagrams can be read as setups of fermionic oscillators. Moreover, its generators reflect an operational classification of entangled states of 3 qubits. We conclude with generalisations of the ZW calculus to higher-dimensional systems, including the definition of a universal set of generators in each dimension.

Page generated in 0.0795 seconds