• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intracranial volumetric changes govern cerebrospinal fluid flow in the Aqueduct of Sylvius in healthy adults

Laganà, M.M., Shepherd, Simon J., Cecconi, P., Beggs, Clive B. 08 April 2017 (has links)
yes / Purpose To characterize the intracranial volumetric changes that influence the cerebrospinal fluid (CSF) pulse in the Aqueduct of Sylvius (AoS). Materials and methods Neck MRI data were acquired from 12 healthy adults (8 female and 4 males; mean age = 30.9 years), using a 1.5 T scanner. The intracranial arterial, venous and CSF volumes changes, together with the aqueductal CSF (aCSF) volume, were estimated from flow rate data acquired at C2/C3 level and in the AoS. The correlations and temporal relationships among these volumes were computed. Results The aCSF volumetric changes were strongly correlated (r = 0.967, p < 0.001) with the changes in intracranial venous volume, whose peak occurred 7.0% of cardiac cycle (p = 0.023) before peak aCSF volume, but less correlated with the intracranial arterial and CSF volume changes (r = −0.664 and 0.676 respectively, p < 0.001). The intracranial CSF volume change was correlated with the intracranial venous volume change (r = 0.820, p < 0.001), whose peak occurred slightly before (4.2% of CC, p = 0.059). Conclusion The aCSF pulse is strongly correlated with intracranial venous volume, with expansion of the cortical veins occurring prior to aCSF flow towards the third ventricle. Both caudal-cranial aCSF flow and venous blood retention occur when arterial blood volume is at a minimum.
2

Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow

Beggs, Clive B., Magnano, C.R., Shepherd, Simon J., Marr, K., Valnarov, V., Hojnacki, D., Bergsland, N., Belov, P., Grisafi, S., Dwyer, Michael G., Carl, Ellen, Weinstock-Guttman, B., Zivadinov, R. 08 November 2013 (has links)
yes / To investigate cerebrospinal fluid (CSF) dynamics in the aqueduct of Sylvius (AoS) in chronic cerebrospinal venous insufficiency (CCSVI)-positive and -negative healthy individuals using cine phase contrast imaging. Materials and Methods Fifty-one healthy individuals (32 CCSVI-negative and 19 age-matched CCSVI-positive subjects) were examined using Doppler sonography (DS). Diagnosis of CCSVI was established if subjects fulfilled ≥2 venous hemodynamic criteria on DS. CSF flow and velocity measures were quantified using a semiautomated method and compared with clinical and routine 3T MRI outcomes. Results CCSVI was associated with increased CSF pulsatility in the AoS. Net positive CSF flow was 32% greater in the CCSVI-positive group compared with the CCSVI-negative group (P = 0.008). This was accompanied by a 28% increase in the mean aqueductal characteristic signal (ie, the AoS cross-sectional area over the cardiac cycle) in the CCSVI-positive group compared with the CCSVI-negative group (P = 0.021). Conclusion CSF dynamics are altered in CCSVI-positive healthy individuals, as demonstrated by increased pulsatility. This is accompanied by enlargement of the AoS, suggesting that structural changes may be occurring in the brain parenchyma of CCSVI-positive healthy individuals
3

Cerebral venous outflow resistance and interpretation of cervical plethysmography data with respect to the diagnosis of chronic cerebrospinal venous insufficiency

Beggs, Clive B., Shepherd, Simon J., Zamboni, P. January 2014 (has links)
No / PURPOSE: To investigate cerebrospinal fluid (CSF) dynamics in the aqueduct of Sylvius (AoS) in chronic cerebrospinal venous insufficiency (CCSVI)-positive and -negative healthy individuals using cine phase contrast imaging. MATERIALS AND METHODS: Fifty-one healthy individuals (32 CCSVI-negative and 19 age-matched CCSVI-positive subjects) were examined using Doppler sonography (DS). Diagnosis of CCSVI was established if subjects fulfilled >/=2 venous hemodynamic criteria on DS. CSF flow and velocity measures were quantified using a semiautomated method and compared with clinical and routine 3T MRI outcomes. RESULTS: CCSVI was associated with increased CSF pulsatility in the AoS. Net positive CSF flow was 32% greater in the CCSVI-positive group compared with the CCSVI-negative group (P = 0.008). This was accompanied by a 28% increase in the mean aqueductal characteristic signal (ie, the AoS cross-sectional area over the cardiac cycle) in the CCSVI-positive group compared with the CCSVI-negative group (P = 0.021). CONCLUSION: CSF dynamics are altered in CCSVI-positive healthy individuals, as demonstrated by increased pulsatility. This is accompanied by enlargement of the AoS, suggesting that structural changes may be occurring in the brain parenchyma of CCSVI-positive healthy individuals.

Page generated in 0.2976 seconds