• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 208
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 11
  • 6
  • 1
  • 1
  • Tagged with
  • 268
  • 268
  • 49
  • 37
  • 36
  • 34
  • 31
  • 29
  • 28
  • 25
  • 21
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Functions of arabidopsis acyl-coenzyme A binding proteins in stress responses

Du, Zhiyan, 杜志岩 January 2011 (has links)
In Arabidopsis thaliana, a gene family encodes acyl-CoA-binding proteins (ACBPs) conserved at the acyl-CoA-binding domain which facilitates the binding to acyl-CoA esters. These ACBPs, designated ACBP1 to ACBP6, range in size from 10.4 to 73.1 kD. Previous studies have shown that the the overexpression of ACBP1 or ACBP2 in Arabidopsis likely promotes repair of lipid membranes and result in enhanced tolerance to lead and cadmium, respectively. Microarray data (http://bar.utoronto.ca/) revealed that the expression of ACBP1 and ACBP2 is also regulated by other abiotic stresses, such as cold and drought, suggestive of their association with these environmental pressures. The aim of this study is to investigate and better understand the roles of ACBP1 and ACBP2 in different stress responses. It has been previously observed that the expression of both ACBP1 and ACBP4 is lead [Pb(II)]-inducible and recombinant ACBP1 and ACBP4 bind Pb(II) in vitro. In this study, ACBP1 and ACBP4 were overexpressed in Brassica juncea to test if these ACBPs could be extended for application in Pb(II) phytoremediation in transgenic B. juncea. On freezing (-12 to -8 °C) treatment, ACBP1-overexpressing Arabidopsis was freezing sensitive and accumulated more phosphatidic acid (PA), but less phosphatidylcholine (PC), in contrast to acbp1 mutant plants which were freezing tolerant and had reduced PA and elevated PC levels. Such changes in PC and PA were consistent with the expression of the mRNA encoding phospholipase D1 (PLD1), a major enzyme that promotes the hydrolysis of PC to PA. In contrast, the expression of phospholipase D (PLD), which plays a positive role in freezing tolerance, was up-regulated in acbp1 mutant plants and down-regulated in ACBP1-overexpressing plants. Reduced PLD1 expression and decreased hydrolysis of PC to PA may enhance membrane stability in the acbp1 mutant plants. Given that recombinant ACBP1 binds PA and acyl-CoA esters in vitro, the expression of PLD1 and PLD could be regulated by PA or acyl-CoAs maintained by ACBP1, if ACBP1 were to resemble the yeast 10-kD ACBP by its capability to modulate gene expression during stress responses. Interestingly, another membrane-associated ACBP, ACBP2, which shows high (76.9%) conservation in amino acid homology to ACBP1, did not appear to be affected by freezing treatment. Besides freezing stress, ACBP1, as well as ACBP2, have been observed to participate in abscisic acid (ABA) signaling. They both promote ABA signaling in seed germination and seedling development, while only ACBP2 is involved in the drought response. The overexpression of ACBP2 in Arabidopsis up-regulated reactive oxygen species (ROS) production culminating in reduction in stomatal aperture and water loss in guard cells, thereby enhancing drought tolerance. For tests in phytoremediation, B. juncea was selected for overexpression of ACBP1 and ACBP4 because it is fast-growing, has a higher biomass than Arabidopsis, and is known to be a good accumulator of Pb(II). However, results of Pb(II) treatment for two days showed that the overexpression of ACBP1 or ACBP4 in B. juncea did not significantly improve Pb(II) tolerance. Nevertheless, B. juncea overexpressing ACBP1 did accumulate Pb(II) in roots whereas ACBP4-overexpressing B. juncea lines accumulated Pb(II) in both shoots and roots. Given that B. juncea has a larger biomass than Arabidopsis, it is likely that the duration of Pb(II)-incubation tested in this study was not drastic enough for comparison, and the incubation time should be further extended for Pb(II) translocation. In addition, future studies on Arabidopsis should be conducted to better understand the mechanism of ACBP4-mediated Pb(II) accumulation using Arabidopsis acbp4 mutant and ACBP4-overexpressing plants. / published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
52

Predicting the 3D structure of human aquaporin-0 protein in eye lens using computational tools

Yao, Jianchao., 姚劍超. January 2003 (has links)
published_or_final_version / abstract / toc / Electrical and Electronic Engineering / Master / Master of Philosophy
53

Generation and characterization of transgenic mice expressing dominant negative osmotic response element binding protein (OREBP) in the brain neurons /

Ho, Shuk-wai, Amy, January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
54

La and SUMO wrestle in regenerating axons

Niekerk, Erna A. van. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Jeffery L. Twiss, Dept. of Biological Sciences. Includes bibliographical references.
55

A characterization of the calcium- and integrin-binding protein family

Maddox, Katherine. January 2009 (has links)
Thesis (M.S.)--University of Delaware, 2007. / Principal faculty advisor: Ulhas P. Naik, Dept. of Biological Sciences. Includes bibliographical references.
56

Topological and mutagenic analyses of a haloacid permease of a Burkholderia species

Tse, Yuk-man. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 110-119) Also available in print.
57

The role of the cellular proteasome and ubiquitin in post-entry restriction of retroviruses by TRIM5[alpha]

Rold, Christopher James. January 2009 (has links)
Thesis (Ph. D. in Microbiology and Immunology)--Vanderbilt University, May 2009. / Title from title screen. Includes bibliographical references.
58

Identification of annexin-binding proteins /

Brownawell, Amy Maria. January 1998 (has links)
Thesis (Ph. D.)--University of Virginia, 1998. / Includes bibliographical references (p. 137-153). Also available online through Digital Dissertations.
59

Characterization of interactions involving the polycystic kidney disease-causing proteins SamCystin and Bicc1 /

Stagner, Emily E. January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Includes bibliographical references.
60

The expression of ABC genes in chlamydomonas reinhardtii under different growth conditions /

Niu, Weiran. January 2004 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 89-96). Also available in electronic version. Access restricted to campus users.

Page generated in 0.0501 seconds