• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 11
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Network Clustering in Vehicular Communication Networks

Li, Weiwei 25 August 2011 (has links)
This thesis proposes a clustering algorithm for vehicular communication networks. A novel clustering metric and an improved clustering framework are introduced. The novel clustering metric, network criticality, is a global metric on undirected graphs which quantifies the robustness of the graph against changes in environmental parameters, and point-to-point network criticality is also defined to measure the resistance between different points of a graph. We localize the notion of network criticality for a node of a vehicular network which can potentially be promoted as the cluster header. We use the localized notion of node criticality in conjunction with a universal link metric, Link Expiration Time (LET), to derive a clustering algorithm for the vehicular network. We employ a distributed multi-hop clustering algorithm based on the notion of network criticality. Simulation results show that the proposed clustering algorithm forms a more robust cluster structure.
2

Network Clustering in Vehicular Communication Networks

Li, Weiwei 25 August 2011 (has links)
This thesis proposes a clustering algorithm for vehicular communication networks. A novel clustering metric and an improved clustering framework are introduced. The novel clustering metric, network criticality, is a global metric on undirected graphs which quantifies the robustness of the graph against changes in environmental parameters, and point-to-point network criticality is also defined to measure the resistance between different points of a graph. We localize the notion of network criticality for a node of a vehicular network which can potentially be promoted as the cluster header. We use the localized notion of node criticality in conjunction with a universal link metric, Link Expiration Time (LET), to derive a clustering algorithm for the vehicular network. We employ a distributed multi-hop clustering algorithm based on the notion of network criticality. Simulation results show that the proposed clustering algorithm forms a more robust cluster structure.
3

An algorithm for identifying clusters of functionally related genes in genomes

Yi, Gang Man 15 May 2009 (has links)
An increasing body of literature shows that genomes of eukaryotes can contain clusters of functionally related genes. Most approaches to identify gene clusters utilize microarray data or metabolic pathway databases to find groups of genes on chromo- somes that are linked by common attributes. A generalized method that can find gene clusters, regardless of the mechanism of origin, would provide researchers with an unbiased method for finding clusters and studying the evolutionary forces that give rise to them. I present a basis of algorithm to identify gene clusters in eukaryotic genomes that utilizes functional categories defined in graph-based vocabularies such as the Gene Ontology (GO). Clusters identified in this manner need only have a common function and are not constrained by gene expression or other properties. I tested the algorithm by analyzing genomes of a representative set of species. I identified species specific variation in percentage of clustered genes as well as in properties of gene clusters, including size distribution and functional annotation. These properties may be diagnostic of the evolutionary forces that lead to the formation of gene clusters. The approach finds all gene clusters in the data set and ranks them by their likelihood of occurrence by chance. The method successfully identified clusters.
4

Mobile Location Estimation Using Genetic Algorithm and Clustering Technique for NLOS Environments

Hung, Chung-Ching 10 September 2007 (has links)
For the mass demands of personalized security services, such as tracking, supervision, and emergent rescue, the location technologies of mobile communication have drawn much attention of the governments, academia, and industries around the world. However, existing location methods cannot satisfy the requirements of low cost and high accuracy. We hypothesized that a new mobile location algorithm based on the current GSM system will effectively improve user satisfaction. In this study, a prototype system will be developed, implemented, and experimented by integrating the useful information such as the geometry of the cell layout, and the related mobile positioning technologies. The intersection of the regions formed by the communication space of the base stations will be explored. Furthermore, the density-based clustering algorithm (DCA) and GA-based algorithm will be designed to analyze the intersection region and estimate the most possible location of a mobile phone. Simulation results show that the location error of the GA-based is less than 0.075 km for 67% of the time, and less than 0.15 km for 95% of the time. The results of the experiments satisfy the location accuracy demand of E-911.
5

A Power-based Clustering Algorithm for Wireless Ad-hoc Networks

Chen, Yan-feng 31 August 2004 (has links)
Energy saving, despite recent advances in extending battery life, is still an important issue in wireless ad hoc networks. An often adopted method is power management, which can help in reducing the transmission power consumption and thus can prolong the battery life of mobile nodes. In this paper, we present a new approach of power management for the wireless ad-hoc networks. Firstly, we propose a clustering algorithm. The clustering algorithm is incooperated with power adjustment and energy-efficient routing procedure to achieve the goal of reducing the transmission power. We use clusterheads to monitor a mobile node's transmission power and to conduct the routing path between any source-destination pair. Not only the lifetime of network is increased but also the interference in communication channel is reduced. As a result, the transmission quality is improved and the network throughput is enhanced. By simulation, we showed that our algorithm outperforms the traditional clustering algorithm both in power saving and in throughput.
6

A data clustering algorithm for stratified data partitioning in artificial neural network

Sahoo, Ajit Kumar Unknown Date
No description available.
7

A data clustering algorithm for stratified data partitioning in artificial neural network

Sahoo, Ajit Kumar 06 1900 (has links)
The statistical properties of training, validation and test data play an important role in assuring optimal performance in artificial neural networks (ANN). Re-searchers have proposed randomized data partitioning (RDP) and stratified data partitioning (SDP) methods for partition of input data into training, vali-dation and test datasets. RDP methods based on genetic algorithm (GA) are computationally expensive as the random search space can be in the power of twenty or more for an average sized dataset. For SDP methods, clustering al-gorithms such as self organizing map (SOM) and fuzzy clustering (FC) are used to form strata. It is assumed that data points in any individual stratum are in close statistical agreement. Reported clustering algorithms are designed to form natural clusters. In the case of large multivariate datasets, some of these natural clusters can be big enough such that the furthest data vectors are statis-tically far away from the mean. Further, these algorithms are computationally expensive as well. Here a custom design clustering algorithm (CDCA) has been proposed to overcome these shortcomings. Comparisons have been made using three benchmark case studies, one each from classification, function ap-proximation and prediction domain respectively. The proposed CDCA data partitioning method was evaluated in comparison with SOM, FC and GA based data partitioning methods. It was found that the CDCA data partitioning method not only performed well but also reduced the average CPU time. / Engineering Management
8

K-Centers Dynamic Clustering Algorithms and Applications

Xie, Qing Yan January 2013 (has links)
No description available.
9

Self-organization map in complex network / Mapas organizativos em redes complexas

Pimenta, Mayra Mercedes Zegarra 25 June 2018 (has links)
The Self-Organization Map (SOM) is an artificial neural network that was proposed as a tool for exploratory analysis in large dimensionality data sets, being used efficiently for data mining. One of the main topics of research in this area is related to data clustering applications. Several algorithms have been developed to perform clustering in data sets. However, the accuracy of these algorithms is data depending. This thesis is mainly dedicated to the investigation of the SOM from two different approaches: (i) data mining and (ii) complex networks. From the data mining point of view, we analyzed how the performance of the algorithm is related to the distribution of data properties. It was verified the accuracy of the algorithm based on the configuration of the parameters. Likewise, this thesis shows a comparative analysis between the SOM network and other clustering methods. The results revealed that in random configuration of parameters the SOM algorithm tends to improve its acuracy when the number of classes is small. It was also observed that when considering the default configurations of the adopted methods, the spectral approach usually outperformed the other clustering algorithms. Regarding the complex networks approach, we observed that the network structure has a fundamental influence of the algorithm accuracy. We evaluated the cases at short and middle learning time scales and three different datasets. Furthermore, we show how different topologies also affect the self-organization of the topographic map of SOM network. The self-organization of the network was studied through the partitioning of the map in groups or communities. It was used four topological measures to quantify the structure of the groups such as: modularity, number of elements per group, number of groups per map, size of the largest group in three network models. In small-world (SW) networks, the groups become denser as time increases. An opposite behavior is found in the assortative networks. Finally, we verified that if some perturbation is included in the system, like a rewiring in a SW network and the deactivation model, the system cannot be organized again. Our results enable a better understanding of SOM in terms of parameters and network structure. / Um Mapa Auto-organizativo (da sigla SOM, Self-organized map, em inglês) é uma rede neural artificial que foi proposta como uma ferramenta para análise exploratória em conjuntos de dados de grande dimensionalidade, sendo utilizada de forma eficiente na mineração de dados. Um dos principais tópicos de pesquisa nesta área está relacionado com as aplicações de agrupamento de dados. Vários algoritmos foram desenvolvidos para realizar agrupamento de dados, tendo cada um destes algoritmos uma acurácia específica para determinados tipos de dados. Esta tese tem por objetivo principal analisar a rede SOM a partir de duas abordagens diferentes: mineração de dados e redes complexas. Pela abordagem de mineração de dados, analisou-se como o desempenho do algoritmo está relacionado à distribuição ou características dos dados. Verificou-se a acurácia do algoritmo com base na configuração dos parâmetros. Da mesma forma, esta tese mostra uma análise comparativa entre a rede SOM e outros métodos de agrupamento. Os resultados revelaram que o uso de valores aleatórios nos parâmetros de configuração do algoritmo SOM tende a melhorar sua acurácia quando o número de classes é baixo. Observou-se também que, ao considerar as configurações padrão dos métodos adotados, a abordagem espectral usualmente superou os demais algoritmos de agrupamento. Pela abordagem de redes complexas, esta tese mostra que, se considerarmos outro tipo de topologia de rede, além do modelo regular geralmente utilizado, haverá um impacto na acurácia da rede. Esta tese mostra que o impacto na acurácia é geralmente observado em escalas de tempo de aprendizado curto e médio. Esse comportamento foi observado usando três conjuntos de dados diferentes. Além disso, esta tese mostra como diferentes topologias também afetam a auto-organização do mapa topográfico da rede SOM. A auto-organização da rede foi estudada por meio do particionamento do mapa em grupos ou comunidades. Foram utilizadas quatro medidas topológicas para quantificar a estrutura dos grupos em três modelos distintos de rede: modularidade, número de elementos por grupo, número de grupos por mapa, tamanho do maior grupo. Em redes de pequeno mundo, os grupos se tornam mais densos à medida que o tempo aumenta. Um comportamento oposto a isso é encontrado nas redes assortativas. Apesar da modularidade, tem um alto valor em ambos os casos.
10

Self-organization map in complex network / Mapas organizativos em redes complexas

Mayra Mercedes Zegarra Pimenta 25 June 2018 (has links)
The Self-Organization Map (SOM) is an artificial neural network that was proposed as a tool for exploratory analysis in large dimensionality data sets, being used efficiently for data mining. One of the main topics of research in this area is related to data clustering applications. Several algorithms have been developed to perform clustering in data sets. However, the accuracy of these algorithms is data depending. This thesis is mainly dedicated to the investigation of the SOM from two different approaches: (i) data mining and (ii) complex networks. From the data mining point of view, we analyzed how the performance of the algorithm is related to the distribution of data properties. It was verified the accuracy of the algorithm based on the configuration of the parameters. Likewise, this thesis shows a comparative analysis between the SOM network and other clustering methods. The results revealed that in random configuration of parameters the SOM algorithm tends to improve its acuracy when the number of classes is small. It was also observed that when considering the default configurations of the adopted methods, the spectral approach usually outperformed the other clustering algorithms. Regarding the complex networks approach, we observed that the network structure has a fundamental influence of the algorithm accuracy. We evaluated the cases at short and middle learning time scales and three different datasets. Furthermore, we show how different topologies also affect the self-organization of the topographic map of SOM network. The self-organization of the network was studied through the partitioning of the map in groups or communities. It was used four topological measures to quantify the structure of the groups such as: modularity, number of elements per group, number of groups per map, size of the largest group in three network models. In small-world (SW) networks, the groups become denser as time increases. An opposite behavior is found in the assortative networks. Finally, we verified that if some perturbation is included in the system, like a rewiring in a SW network and the deactivation model, the system cannot be organized again. Our results enable a better understanding of SOM in terms of parameters and network structure. / Um Mapa Auto-organizativo (da sigla SOM, Self-organized map, em inglês) é uma rede neural artificial que foi proposta como uma ferramenta para análise exploratória em conjuntos de dados de grande dimensionalidade, sendo utilizada de forma eficiente na mineração de dados. Um dos principais tópicos de pesquisa nesta área está relacionado com as aplicações de agrupamento de dados. Vários algoritmos foram desenvolvidos para realizar agrupamento de dados, tendo cada um destes algoritmos uma acurácia específica para determinados tipos de dados. Esta tese tem por objetivo principal analisar a rede SOM a partir de duas abordagens diferentes: mineração de dados e redes complexas. Pela abordagem de mineração de dados, analisou-se como o desempenho do algoritmo está relacionado à distribuição ou características dos dados. Verificou-se a acurácia do algoritmo com base na configuração dos parâmetros. Da mesma forma, esta tese mostra uma análise comparativa entre a rede SOM e outros métodos de agrupamento. Os resultados revelaram que o uso de valores aleatórios nos parâmetros de configuração do algoritmo SOM tende a melhorar sua acurácia quando o número de classes é baixo. Observou-se também que, ao considerar as configurações padrão dos métodos adotados, a abordagem espectral usualmente superou os demais algoritmos de agrupamento. Pela abordagem de redes complexas, esta tese mostra que, se considerarmos outro tipo de topologia de rede, além do modelo regular geralmente utilizado, haverá um impacto na acurácia da rede. Esta tese mostra que o impacto na acurácia é geralmente observado em escalas de tempo de aprendizado curto e médio. Esse comportamento foi observado usando três conjuntos de dados diferentes. Além disso, esta tese mostra como diferentes topologias também afetam a auto-organização do mapa topográfico da rede SOM. A auto-organização da rede foi estudada por meio do particionamento do mapa em grupos ou comunidades. Foram utilizadas quatro medidas topológicas para quantificar a estrutura dos grupos em três modelos distintos de rede: modularidade, número de elementos por grupo, número de grupos por mapa, tamanho do maior grupo. Em redes de pequeno mundo, os grupos se tornam mais densos à medida que o tempo aumenta. Um comportamento oposto a isso é encontrado nas redes assortativas. Apesar da modularidade, tem um alto valor em ambos os casos.

Page generated in 0.1056 seconds