Spelling suggestions: "subject:" fluids"" "subject:" bluids""
201 |
A fundamental study of the electro-rheological phenomenonChen, Zongyu January 1994 (has links)
No description available.
|
202 |
Theoretical and experimental investigation into the use of static charge to measure flowrateMohammed, Manzoor January 1997 (has links)
No description available.
|
203 |
Synthesis and mechanical stability of diamond and diamondlike carbon coatingsChandra, Lalitesh January 1995 (has links)
No description available.
|
204 |
Turbulent mixing of unpremixed reactants in stirred tanks.Zipp, Robert Philip. January 1989 (has links)
The turbulent mixing process between two liquid streams in a standard tank stirred by a Rushton turbine has been studied. Experimental measurements of concentration and segregation (fluctuating concentration) have been made for both reacting and non-reacting flows. For the non-reacting case, one stream was marked with a fluorescent dye; the local concentration was measured using a fluorescence technique and a bifurcated fiber optic probe of custom design. Measurements were taken at two axial-radial planes within the tank. In the reacting case, the second-order reaction between sodium hydroxide and hydrochloric acid was studied, and urinine acted as a fluorescent indicator which became non-fluorescent as the reaction proceeded. Numerical studies of the mixing in the laboratory-scale vessel were made. FLUENT, a general-purpose fluid flow modelling program, was used to simulate the flow within the tank. This program uses a k-epsilon closure of the turbulent momentum equations. The program was modified to allow the inclusion of a segregation balance equation. Using this segregation balance technique, the turbulent species balance equations were solved. The results of these simulations agreed with the experimental measurements in all regions except the region near the entrance jets, where the model could not adequately predict the fluid behavior. This study has successfully predicted the behavior of reacting fluids in a bench-scale turbulently mixed stirred tank by the implementation of a segregation balance throughout the entire domain.
|
205 |
Thermodynamic properties of 1-ethyl-3-methylimidazolium ethyl sulphate with nitrogen and sulphur compounds at T = (298.15 - 318.15) K and P = 1 barChule, Siyanda Brian January 2016 (has links)
Submitted in fulfillment of the academic requirements for the Masters of Applied Science (Chemistry), Durban University of Technology, Durban, South Africa, 2016. / In this work, the thermodynamic properties for the binary mixtures containing the ionic liquid (IL): 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM] [EtSO4]) were calculated. The binary systems studied were {pyridine (Py) or ethyl acetoacetate (EAA) or thiophene (TS) + [EMIM] [EtSO4]}. The results were interpreted in terms of the intermolecular interactions between the (pyridine + IL), (ethyl acetoacetate + IL), and (thiophene + IL) molecules.
The physical properties: density, speed of sound, and refractive index were measured for the binary mixtures over the complete mole fraction range using an Anton Paar DSA 5000 M vibrating U- tube densimeter and an Anton Paar RXA 156 refractometer, respectively. The measurements were done at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K and at p = 0.1 MPa. The experimental data was used to calculate the derived properties for the binary mixtures namely:- excess molar volume (V E ), isentropic compressibility (ks), molar refractions (R) and deviation in refractive
index (Δn).
For the binary mixtures, (Py or EAA or TS + IL),
V E was negative throughout the whole
composition range which indicates the existence of attractive intermolecular interaction between (pyridine + IL) and (ethyl acetoacetate + IL) for (thiophene + IL), V E was negative at low mole fraction of thiophene and became positive at high mole fraction of thiophene. For the binary mixtures (pyridine + IL), (ethyl acetoacetate + IL), ks was positive indicating that the binary
mixtures were more compressible than the ideal mixture. For the binary mixture (thiophene + IL)
ks was negative at low thiophene composition and positive at high composition indicating that the
binary mixture was less compressible than the ideal mixture at low thiophene composition and more compressible at high composition of thiophene. The molar refraction, R, is positive for the (Py or EAA or TS + IL) binary systems at T = (298.15 – 318.15) K, molar refraction decreases as the organic solvent composition increases. For the binary mixture (pyridine + [EMIM] [EtSO4]), Δn is negative at mole fractions < 0.75 of pyridine and positive at mole fractions >0.75 at all temperatures and decreases with an increase in temperature. For the binary system (ethyl acetoacetate + [EMIM] [EtSO4]), Δn values are positive over the entire composition range and at all temperatures and increases with an increase in temperature. Δn values for the (thiophene + IL) system are negative for mole fractions of thiophene < 0.62 and becomes positive for mole fractions of thiophene > 0.62 and Δn increases with an increase in temperature. The Redlich-Kister
smoothing equation was used successfully for the correlation of
V E and Δn data. The Lorentz-
Lorenz equation gave a poor prediction of V E , but a good prediction of density or refractive index. / M
|
206 |
Colloidal dispersions in active and passive liquid crystalline fluids : a simulation studyFoffano, Giulia January 2014 (has links)
In this thesis we study the physics of colloidal dispersions in active and passive liquid crystals by computer simulations. Liquid crystals are materials that exhibit long-range orientational order, with characteristics intermediate between the ones of simple, isotropic fluids and the ones of crystalline solids. Active fluids are suspensions of particles that continuously stir their ambient fluid. Like liquid crystals, active fluids undergo phase transitions to orientationally ordered phases. The framework that we apply here to describe them extends hydrodynamic equations for liquid crystals to the active case, in which their constituent particles exert local stresses on the simple fluid in which they are embedded. Studying systems of colloids embedded in these materials can be done with multiple aims. Here we use colloids as probe particles to investigate the rheological properties of active nematics. To do so we apply a constant force to a spherical particle embedded therein and define an effective viscosity, which we determine by measuring the velocity in steady state. We find an important dependence of the effective viscosity on the size of the particle, and a regime characterised by a steady state of negative drag. We also consider collective properties for systems of many colloids and analyse how they are affected by activity. We find that spontaneous flow can either hinder or favour colloidal aggregation, depending mainly on whether a fixed orientation of the liquid crystal is imposed close to the colloidal surface. This remains true independently of the initial condition chosen for the liquid crystal, which only affects the transition to spontaneous flow.
|
207 |
Characterization, occurrence and behaviour of light non-aqueous phase liquids in fractured rockHardisty, Paul Edward January 1996 (has links)
No description available.
|
208 |
Group theoretical and compatibility approaches to some nonlinear PDEs arising in the study of non-Newtonian fluid mechanicsAziz, Taha 06 May 2015 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2015. / This thesis is primarily concerned with the analysis of some nonlinear
problems arising in the study of non-Newtonian fluid mechanics by
employing group theoretic and compatibility approaches.
It is well known now that many manufacturing processes in industry involve
non-Newtonian fluids. Examples of such fluids include polymer solutions
and melts, paints, blood, ketchup, pharmaceuticals and many others. The
mathematical and physical behaviour of non-Newtonian fluids is
intermediate between that of purely viscous fluid and that of a perfectly
elastic solid. These fluids cannot be described by the classical Navier–Stokes
theory. Striking manifestations of non-Newtonian fluids have been observed
experimentally such as the Weissenberg or rod-climbing effect, extrudate
swell or vortex growth in a contraction flow. Due to diverse physical
structure of non-Newtonian fluids, many constitutive equations have been
developed mainly under the classification of differential type, rate type and
integral type. Amongst the many non-Newtonian fluid models, the fluids of
differential type have received much attention in order to explain features
such as normal stress effects, rod climbing, shear thinning and shear
thickening.
Most physical phenomena dealing with the study of non-Newtonian fluids
are modelled in the form of nonlinear partial differential equations (PDEs).
It is easier to solve a linear problem due to its extensive study as well due to
|
209 |
The effect of preoperative apple juice on the prevalence of hypoglycaemia in paediatric patientsLee, Clover-Ann 24 January 2013 (has links)
Background: Children have historically been fasted for prolonged periods
preoperatively to reduce the volume and acidity of their gastric contents and thus
the risk of regurgitation and pulmonary aspiration. Evidence shows that this risk
is not increased by following the current recommended fasting guidelines, and
that prolonged fasting may be detrimental to children, who may present with
hunger, thirst, depleted intravascular volume, metabolic acidosis and
hypoglycaemia.
A recent study at Charlotte Maxeke Johannesburg Academic Hospital showed a
18.5% prevalence of biochemical hypoglycaemia, defined as a blood glucose
concentration of less than 3.5 mmol/l, in children from one to five years of age
presenting for elective surgery.
Aims: The aims of this study were to document the prevalence of biochemical
hypoglycaemia in children from the ages of one to five years who were given
apple juice to drink at least two hours preoperatively, and to compare these
results to a historical control group.
Methods: A prospective, contextual comparative study design was used.
Approval was obtained from the University of the Witwatersrandʼs Human Ethics
Committee and other relevant authorities.
The groups were matched for age and weight. Consent was obtained from the
guardians of all children who met the inclusion criteria before being enrolled in
the study.
A standard 200 ml carton of commercially available apple juice was offered to
each participant. The volume and time of the juice consumed was documented,
along with relevant demographic data. Inhalational induction of anaesthesia proceeded a minimum of two hours later, and a venous glucose concentration
was measured.
Results: The prevalence of biochemical hypoglycaemia was statistically
significantly reduced in the intervention group (p = 0.0163), eliminating the effect
of prolonged preoperative fasting.
Conclusion: The consumption of clear apple juice on the morning of surgery is a
safe, inexpensive, effective way to reduce the prevalence of hypoglycaemia in
children presenting for elective surgery.
|
210 |
Group invariant solutions for the unsteady magnetohydrodynamic flow of a fourth grade fluid in a porous mediumCarrim, Abdul Hamid 18 July 2014 (has links)
The e ects of non-Newtonian uids are investigated by means of two appropri-
ate models studying a third and fourth grade uid respectively. The geometry
of both these models is described by the unsteady unidirectional
ow of an in-compressible
uid over an in nite at rigid plate within a porous medium. The uid is electrically conducting in the presence of a uniform applied magnetic eld that occurs in the normal direction to the ow.
The classical Lie symmetry approach is undertaken in order to construct
group invariant solutions to the governing higher-order non-linear partial dif-ferential equations. A three-dimensional Lie algebra is acquired for both uid ow problems.
In each case, the invariant solution corresponding to the non-travelling wave
type is considered to be the most signi cant solution for the uid ow model
under investigation since it directly incorporates the magnetic eld term. A numerical solution to the governing partial di erential equation is produced and a comparison is made with the results obtained from the analytical ap-proach.
Finally, a graphical analysis is carried out with the purpose of observing the
e ects of the emerging physical parameters. In particular, a study is carried
out to examine the in uences of the magnetic eld parameter and the non-Newtonian
fluid parameters.
|
Page generated in 0.0592 seconds