• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Lateral Resistance of Piles at the Crest of Slopes in Sand

Mirzoyan, Artak Davit 29 August 2007 (has links) (PDF)
Pile foundations near the crest of a slope are often required to resist lateral loads. This is particularly important for piles at the abutments of bridges. However, limited full-scale test data are available to indicate how the lateral resistance of a pile would be affected when it is located near the crest of a slope. To investigate the effect of a slope on lateral pile resistance, three full scale lateral load tests were conducted on an instrumented steel pipe pile. For the first test, the pile was laterally loaded in horizontal ground. For the second test the pile was at the crest of a 30 degree slope and in the third test the pile was placed three diameters behind the crest of the 30 degree slope. The soil around the pile consisted of clean sand compacted to about 95% of the modified Proctor maximum unit weight for all three tests. Laboratory and in-situ direct shear tests indicated that the friction angle of the sand was approximately 39 degrees. The pile was instrumented with strain gages at approximately 1.5 ft intervals along its length so that the bending moment versus depth profile could be determined. Pile head load, deflection, and rotation were also measured. Based on the results, the presence of the slope decreased the ultimate lateral resistance of the pile-soil system by approximately 25% and 10% for tests two and three, respectively. The presence of the slope also resulted in an increase in the maximum bending moment of approximately 40% and 30% for tests two and three, respectively. Analyses using LPILE matched the lateral resistance for the pile in horizontal ground, but significantly overestimated the decrease in resistance due to the sloping ground. A mathematical model was developed to predict the ultimate strength of a pile located some distance from the crest of a cohesionless sloping profile. Parametric test results using the model were within 2.6 % of the measured results of tests two and three.
12

Behaviour of Light-frame Wood Stud Walls Subjected to Blast Loading

Lacroix, Daniel 24 July 2013 (has links)
Deliberate and accidental explosions along with the heightened risk of loss of life and property damage during such events have highlighted the need for research in the behaviour of materials under high strain rates. Where an extensive body of research is available on steel and concrete structures, little to no details on how to address the design or retrofitting of wood structures subjected to a blast threat are available. Studies reported in the literature that focused on full scale light-frame wood structures did not quantify the increase in capacity due to the dynamic loading while the studies that did quantify the increase mostly stems from small clear specimens that are not representative of the behaviour of structural size members with defects. Tests on larger-scale specimens have mostly focused on the material properties and not the structural behaviour of subsystems. Advancements in design and construction techniques have greatly contributed to the emergence of taller and safer wood structures which increase potential for blast threat. This thesis presents results on the flexural behaviour of light-frame wood stud walls subjected to shock wave loading using the University of Ottawa shock tube. The emphasis is on the overall behaviour of the wall subsystem, especially the interaction between the sheathing and the studs through the nailed connection. The approach employed in this experimental program was holistic, where the specimens were investigated at the component and the subsystem levels. Twenty walls consisting of 38 mm x 140 mm machine stress-rated (MSR) studs spaced 406 mm on center and sheathed with two different types and sheathing thicknesses were tested to failure under static and dynamic loads. The experimental results were used to determine dynamic increase factors (DIFs) and a material predictive model was validated using experimental data. The implications of the code are also discussed and compared to the experimental data. Once validated, an equivalent single-degree-of-freedom (SDOF) model incorporating partial composite action was used to evaluate current analysis and design assumptions. The results showed that a shock tube can effectively be used to generate high strain-rate flexural response in wood members and that the material predictive model was found suitable to effectively predict the displacement resulting from shock wave loading. Furthermore, it was found that current analysis and design approaches overestimated the wall displacements.
13

Behaviour of Light-frame Wood Stud Walls Subjected to Blast Loading

Lacroix, Daniel January 2013 (has links)
Deliberate and accidental explosions along with the heightened risk of loss of life and property damage during such events have highlighted the need for research in the behaviour of materials under high strain rates. Where an extensive body of research is available on steel and concrete structures, little to no details on how to address the design or retrofitting of wood structures subjected to a blast threat are available. Studies reported in the literature that focused on full scale light-frame wood structures did not quantify the increase in capacity due to the dynamic loading while the studies that did quantify the increase mostly stems from small clear specimens that are not representative of the behaviour of structural size members with defects. Tests on larger-scale specimens have mostly focused on the material properties and not the structural behaviour of subsystems. Advancements in design and construction techniques have greatly contributed to the emergence of taller and safer wood structures which increase potential for blast threat. This thesis presents results on the flexural behaviour of light-frame wood stud walls subjected to shock wave loading using the University of Ottawa shock tube. The emphasis is on the overall behaviour of the wall subsystem, especially the interaction between the sheathing and the studs through the nailed connection. The approach employed in this experimental program was holistic, where the specimens were investigated at the component and the subsystem levels. Twenty walls consisting of 38 mm x 140 mm machine stress-rated (MSR) studs spaced 406 mm on center and sheathed with two different types and sheathing thicknesses were tested to failure under static and dynamic loads. The experimental results were used to determine dynamic increase factors (DIFs) and a material predictive model was validated using experimental data. The implications of the code are also discussed and compared to the experimental data. Once validated, an equivalent single-degree-of-freedom (SDOF) model incorporating partial composite action was used to evaluate current analysis and design assumptions. The results showed that a shock tube can effectively be used to generate high strain-rate flexural response in wood members and that the material predictive model was found suitable to effectively predict the displacement resulting from shock wave loading. Furthermore, it was found that current analysis and design approaches overestimated the wall displacements.

Page generated in 0.0485 seconds