• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An electrophysiological study of chromatic processing in the human visual system : using visual evoked potentials and electroretinograms to study cortical and retinal contributions to human trichromatic vision

Challa, Naveen Kumar January 2011 (has links)
The work in this thesis is concerned with examining the retinal and cortical contributions to human trichromatic colour vision. Chromatic processing at the cortex level was examined using visual evoked potentials (VEPs). These responses were elicited by chromatic spot stimuli, which were manipulated in order to selectively activate the chromatic processing system. Chromatic processing at the retinal level was examined using the electroretinograms (ERGs) for which cone isolating stimuli were used to assess the nature of L and M cone inputs to cone-opponent mechanisms. The results from the VEP experiments suggest VEP morphology is dependent upon 1) chromatic and or luminance contrast content of the stimulus, 2) stimulus size, and 3) extent to which the chromatic stimulus activates either the L/M or S/(L+M) opponent mechanism. The experiments indicate that chromatic stimulation is indexed by large N1 component and small offset responses. Optimal stimulus size for chromatic isolation is 2-4 ° along L/M axes and 6° along S/(L+M) axis. From the ERG experiments, It has been shown that the low (12Hz) and high (30Hz) temporal frequency flickering stimuli can isolate the chromatic and luminance processing mechanisms in the retina. For low temporal frequency ERGs, the L:M ratio was close to unity and L/M phase difference was close to 180°. For high temporal frequency ERGs, the L:M ratio was more than unity and L/M phase difference was close to 90°. In addition to this, the variation in L:M ratio across the retinal eccentricity was also examined. These results suggest, for the chromatic processing, L:M ratio is close to unity independent of retinal eccentricity and individuals. For the luminance processing, L:M ratio is more than unity and depends upon the region of the retina being stimulated. These findings indicate the maintenance of cone selective input for the chromatic processing across the human retina.
2

An electrophysiological study of chromatic processing in the human visual system. Using visual evoked potentials and electroretinograms to study cortical and retinal contributions to human trichromatic vision.

Challa, Naveen K. January 2011 (has links)
The work in this thesis is concerned with examining the retinal and cortical contributions to human trichromatic colour vision. Chromatic processing at the cortex level was examined using visual evoked potentials (VEPs). These responses were elicited by chromatic spot stimuli, which were manipulated in order to selectively activate the chromatic processing system. Chromatic processing at the retinal level was examined using the electroretinograms (ERGs) for which cone isolating stimuli were used to assess the nature of L and M cone inputs to cone-opponent mechanisms. The results from the VEP experiments suggest VEP morphology is dependent upon 1) chromatic and or luminance contrast content of the stimulus, 2) stimulus size, and 3) extent to which the chromatic stimulus activates either the L/M or S/(L+M) opponent mechanism. The experiments indicate that chromatic stimulation is indexed by large N1 component and small offset responses. Optimal stimulus size for chromatic isolation is 2-4 ° along L/M axes and 6° along S/(L+M) axis. From the ERG experiments, It has been shown that the low (12Hz) and high (30Hz) temporal frequency flickering stimuli can isolate the chromatic and luminance processing mechanisms in the retina. For low temporal frequency ERGs, the L:M ratio was close to unity and L/M phase difference was close to 180°. For high temporal frequency ERGs, the L:M ratio was more than unity and L/M phase difference was close to 90°. In addition to this, the variation in L:M ratio across the retinal eccentricity was also examined. These results suggest, for the chromatic processing, L:M ratio is close to unity independent of retinal eccentricity and individuals. For the luminance processing, L:M ratio is more than unity and depends upon the region of the retina being stimulated. These findings indicate the maintenance of cone selective input for the chromatic processing across the human retina.

Page generated in 0.1354 seconds