• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of routing reliability of vehicular ad hoc networks

Eiza, M.H., Ni, Q., Owens, T., Min, Geyong 18 June 2013 (has links)
In intelligent transportation systems, the cooperation between vehicles and the road side units is essential to bring these systems to fruition. Vehicular ad hoc networks (VANETs) are a promising technology to enable the communications among vehicles on one hand and between vehicles and road side units on the other hand. However, it is a challenging task to develop a reliable routing algorithm for VANETs due to the high mobility and the frequent changes of the network topology. Communication links are highly vulnerable to disconnection in VANETs; hence, the routing reliability of these ever-changing networks needs to be paid special attention. In this paper, we propose a new vehicular reliability model to facilitate the reliable routing in VANETs. The link reliability is defined as the probability that a direct communication link between two vehicles will stay continuously available over a specified time period. Furthermore, the link reliability value is accurately calculated using the location, direction and velocity information of vehicles along the road. We extend the well-known ad hoc on-demand distance vector (AODV) routing protocol to propose our reliable routing protocol AODV-R. Simulation results demonstrate that AODV-R outperforms significantly the AODV routing protocol in terms of better delivery ratio and less link failures while maintaining a reasonable routing control overhead.
2

Cooperative Communications : Link Reliability and Power Efficiency

Ahsin, Tafzeel ur Rehman January 2012 (has links)
Demand for high data rates is increasing rapidly for the future wireless generations, due to the requirement ofubiquitous coverage for wireless broadband services. More base stations are needed to deliver these services, in order tocope with the increased capacity demand and inherent unreliable nature of wireless medium. However, this would directly correspond to high infrastructure costand energy consumption in cellular networks. Nowadays, high power consumption in the network is becoming a matter of concern for the operators,both from environmental and economic point of view. Cooperative communications, which is regarded as a virtual multi-input-multi-output (MIMO) channel, can be very efficient in combating fading multi-path channels and improve coverage with low complexity and cost. With its distributed structure, cooperativecommunications can also contribute to the energy efficiency of wireless systems and green radio communications of the future. Using networkcoding at the top of cooperative communication, utilizes the network resources more efficiently. Here we look at the case of large scale use of low cost relays as a way of making the links reliable, that directly corresponds to reductionin transmission power at the nodes. A lot of research work has focused on highlighting the gains achieved by using network codingin cooperative transmissions. However, there are certain areas that are not fully explored yet. For instance, the kind of detectionscheme used at the receiver and its impact on the link performance has not been addressed.The thesis looks at the performancecomparison of different detection schemes and also proposes how to group users at the relay to ensure mutual benefit for the cooperating users.Using constellation selection at the nodes, the augmented space formed at the receiver is exploited for making the links more reliable. Thenetwork and the channel coding schemes are represented as a single product code, that allows us to exploit the redundancy present in theseschemes efficiently and powerful coding schemes can also be designed to improve the link performance. Heterogeneous network deployments and adaptive power management has been used in order to reduce the overall energy consumption in acellular network. However, the distributed structure of nodes deployed in the network, is not exploited in this regard. Here we have highlightedthe significance of cooperative relaying schemes in reducing the overall energy consumption in a cellular network.  The role of differenttransmission and adaptive resource allocation strategies in downlink scenarios have been investigated in this regard.It has been observed that the adaptive relaying schemes can significantly reduce the total energy consumption as compared to the conventionalrelaying schemes. Moreover, network coding in these adaptive relaying schemes, helps in minimizing the energy consumption further.The balance between the number of base stations and the relays that minimizes the energy consumption, for each relaying scheme is also investigated. / QC 20120124

Page generated in 0.0563 seconds