• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A novel Lozenge gene in silkworm, Bombyx mori regulates the melanization response of hemolymph

Xu, M., Wang, X., Tan, J., Zhang, K., Guan, X., Patterson, Laurence H., Ding, H., Cui, H. 09 July 2015 (has links)
No / Runt-related (RUNX) transcription factors are evolutionarily conserved either in vertebrate or invertebrate. Lozenge (Lz), a members of RUNX family as well as homologue of AML-1, functions as an important transcription factor regulating the hemocytes differentiation. In this paper, we identified and characterized RUNX family especially Lz in silkworm, which is a lepidopteran model insect. The gene expression analysis illustrated that BmLz was highly expressed in hemocytes throughout the whole development period, and reached a peak in glutonous stage. Over-expression of BmLz in silkworm accelerated the melanization process of hemolymph, and led to instantaneously up-regulation of prophenoloxidases (PPOs), which were key enzymes in the melanization process. Further down-regulation of BmLz expression by RNA interference resulted in the significant delay of melanization reaction of hemolymph. These findings suggested that BmLz regulated the melanization process of hemolymph by inducing PPOs expression, and played a critical role in innate immunity defense in silkworm.
2

Ecology and evolution in a host-parasitoid system : Host search, immune responses and parasitoid virulence

Fors, Lisa January 2015 (has links)
In host-parasitoid systems, there is a continuous coevolutionary arms race where each species imposes a strong selection pressure on the other. The host needs to develop defence strategies in order to escape parasitism and the parasitoid must evolve counter-defence strategies in order to overcome the host’s immune defence and successfully reproduce. This makes host-parasitoid systems excellent model systems for understanding evolutionary processes underlying host race formation and speciation. In order to gain a better understanding of the complexity of host-parasitoid interactions several aspects must be considered, such as search behaviour and host selection in the parasitoid, the development of immune responses in the host and counter-defence strategies in the parasitoid. In this thesis, I investigate interactions and coevolution in a natural host-parasitoid system, consisting of five species of Galerucella leaf beetles and three species of Asecodes parasitoids, by combining behavioural ecology with chemical ecology and immunology. In the studies performed, I found that pheromone production and responses in the beetles are connected to the phylogenetic relatedness between the Galerucella species (Paper I). I found no evidence that Asecodes exploits the adult pheromone to locate host larvae, but observed an ability in the parasitoids to distinguish a better host from a less suitable one based on larval odors (Paper II). The studies also revealed large differences in immune competence between the Galerucella species, which were linked to differences in hemocyte composition in the beetle larvae (Paper III, IV). Further, the results suggest that parasitism success in polyphagous Asecodes is strongly affected by former host species of the parasitoid (Paper IV). In conclusion, the results of this thesis suggest an on-going evolution in both parasitoid virulence and host immune responses in the Asecodes-Galerucella system. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.</p>

Page generated in 0.1083 seconds