• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 763
  • 742
  • 174
  • 100
  • 93
  • 71
  • 40
  • 22
  • 19
  • 12
  • 10
  • 9
  • 7
  • 4
  • 4
  • Tagged with
  • 2399
  • 361
  • 355
  • 293
  • 200
  • 179
  • 164
  • 163
  • 156
  • 129
  • 127
  • 121
  • 119
  • 106
  • 103
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Intravascular ultrasound assessment of coronary artery morphology and stents

Appleby, Mark Allen January 1998 (has links)
No description available.
12

Nondiffracting, band limited acoustic waves and their doppler effects

Guang, Li January 1998 (has links)
No description available.
13

Studies on intestinal blood flow

Qamar, M. I. January 1986 (has links)
No description available.
14

The role of bilateral transcranial doppler sonography in carotid endarterectomy

Magee, Timothy Raymond January 1996 (has links)
No description available.
15

Electrochemical investigation of transient bubble phenomena

Delaplace, Christine January 1999 (has links)
No description available.
16

On ferroelectric polymer transducers and imaging arrays

Chen, Qing-Xin January 1989 (has links)
No description available.
17

Volumetric ultrasound system- design and testing

Pitt, Timothy James January 1998 (has links)
No description available.
18

A knowledge-based approach to the interpretation of medical ultrasound images

Morton, A. S. January 1990 (has links)
No description available.
19

Enhancing filtration by electroacoustic means

Tuori, Timo January 1998 (has links)
Fouling of filter media and physico-chemical properties of suspensions decrease the efficiency of filtration devices in a wide range of process industries. Environmental protection causes increasing demand to clean effluent waters to higher standards and to recycle process waters more completely. Conventional deliquoring processes are mainly based on a single driving force, usually gravity, underpressure or pressure. Today, multiforce deliquoring processes based on a combination of ultrasonic and/or other nonmechanical forces, like an electric field, are being developed. These new technological applications, namely electro-acoustic deliquoring techniques, will most probably enable higher deliquoring rates and final solid contents than conventional methods have been able to yield. Results from an experimental study of electric and/or ultrasonic field assisted filtrations are presented in this thesis. Both electric and ultrasonic fields can reduce fouling of the filtration medium and have a significant influence on filtration capacity. The extent of filtration improvement is affected mostly by particle size, surface charge, acoustic frequency, intensity and field strengths. Theoretical examinations of the use of electric and/or ultrasonic fields to enhance filtration efficiency are laid out. Some aspects regarding orthokinetic interaction in acoustic agglomeration have been considered, and energy consumptions of the filtrations of different suspensions used in experiments were also determined. Using electric field as a pre-treatment, biolfiber suspension filtration can be enhanced 4-fold and energy consumption of electric field enhancing the filtration (kWh kg1 separated water; product final dry solid content 23 % by mass) was only about 17 % of the total energy consumption of conventional vacuum filtration. Pre-treatment units can be connected to the filtration unit, for instance before the filter drum. Possible pre-treatment apparatuses could be electroflotation equipment or a pre-treatment tube technique introduced in this Ph.D. Thesis…
20

Investigation of microbubble-cell interaction and development of an ultrasound delivery system

Tente, Raniska January 2010 (has links)
Microbubbles have been used for several decades as ultrasound contrast agents in diagnostic ultrasound imaging. However, their application in gene therapy as delivery vehicles has only recently been realised. The presence of microbubbles in close proximity to cells during ultrasound insonation can increase the efficacy of drug or gene delivery by inducing formation of transient, non-lethal perforations in the cell membrane, a process termed sonoporation. In order to develop techniques for successful delivery of therapeutic agents, it is necessary to quantify the composition and physical characteristics of microbubbles in order to be able to determine how these affect the sonoporation process as required. Although several microbubbles are available commercially, the components of the shell of these proprietary microbubbles have not been disclosed. In order to study sonoporation and the possibility of delivering drugs and genes it became necessary to develop a formulation for in-house experimental microbubbles. These experimental in-house microbubbles have not been previously investigated with regard to their interaction with cells, their potential for sonoporation and / or their bioeffects. Characterisation of the in-house microbubbles was necessary prior to any attempts to use them as delivery vehicles in vitro, or indeed, in vivo. Confocal laser scanning microscopy (CLSM) was used in order to determine the size distribution of both in-house microbubbles and Definity® a commercially available contrast agent. Confocal imaging and 3-D reconstruction of in-house microbubbles indicated the structure, morphology and size-distribution of these membrane-bound microbodies. Microbubbles were later separated according to size using a density gradient. It was concluded that the distribution of sizes of the microbubbles was in part due to the multi-lamellar nature of the microbubble shell. Cells were initially cultured in Petri dishes and insonated in the presence and absence of in-house microbubbles, in order to assess any bioeffects emerging from the application of ultrasound alone or in the presence of the microbubble constructs. Cells were cultured subsequently on an acoustically-transparent Mylar membrane, which was then “sandwiched” between two acetal homopolymer (Derlin) rings and placed in a specially designed ultrasound tank. Ultimately, cells were grown in an OptiCell™, an acoustically-transparent parallel membrane environment, where delivery of molecules of various sizes, in the presence of both in-house and Definity® microbubbles was investigated. Sonoporation was achieved with insonication of SK Hep-1 cells with a “physiotherapy machine” applying a power of 2.54 W / cm2 for 2-3 secs in the presence of Definity® microbubbles and passage of Calcein, an impermeable molecule, into the cells was detected using flow cytometric analysis. In addition, expression of enhanced green fluorescent protein (EGFP) was also detected 24 hours after insonication of SK Hep-1 cells in the presence of Definity® microbubbles and a linearised plasmid pCS2, encoding EGFP, under the same ultrasonic conditions. Sonoporation was also investigated with the use of a diagnostic ultrasound scanner, since it is more clinically relevant. Although several acoustic and non-acoustic parameters were investigated, sufficient sonoporation was not attained using this scanner. The bioeffects of ultrasound on cells both in vivo and in vitro have been extensively investigated. However, the exact cellular mechanisms that are affected by the application of ultrasound waves are not understood. In this study, the effects of ultrasound on a number of pathways were investigated. Expression of Hsp70, a cell stress protein often associated with heat-shock, during application of continuous wave ultrasound, suggests that cells may undergo heat stress. During application of continuous wave ultrasound in the presence of Definity® microbubbles, expression of Hsp70 was shown to decrease compared to when ultrasound was applied in the absence of Definity® microbubbles. In addition, expression of HO-1, a protein associated with hypoxic pathways was also present during application of ultrasound in the absence of microbubbles. These results suggest that in the absence of ultrasound contrast agents, insonation can cause the expression of proteins associated with different forms of cell stress such as heat-shock and hypoxia, thus initiating the apoptotic process. In this thesis, it has been shown that the mean size of the in-house microbubbles is comparable to that of commercially available microbubbles such as Definity®. In addition, it has been shown that sonoporation and successful delivery of small molecules in the presence of Definity® microbubbles is achievable with the equipment and the specific system which was developed. This reinforces the promising role of in-house microbubbles as delivery vehicles for therapeutic agents. Finally, an investigation on the possible bioeffects of ultrasound in the presence and absence of ultrasound contrast agents, revealed that under acoustic conditions identical to those used for achieving sonoporation, cells experience stress, instigating pathways that could potentially lead to cell death.

Page generated in 0.0322 seconds