• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation d'un effecteur chez Toxoplasma gondii : découverte d'une voie alternative d'inflammation régulée par β-caténine / Parasite and host-cell interactions : Characterization of new effector proteins used by Toxoplasma gondii to interfere with host signaling pathways

He, Huan 27 September 2017 (has links)
Toxoplasma gondii est un parasite intracellulaire et obligatoire. Ce protozoa est un des parasites les plus successifs qui infectent tous les animaux à sang chaud, y compris l’humain. Ce succès est probablement à cause de la sécrétion d’une des séries de protéines effectrices, qui sont impliquées dans la modulation des voies de signalisation de la cellule hôte. Cette modulation permet aux parasites d’établir une infection chronique qui dure un long terme, et qui favorise leur transmission à un nouvel hôte. Dans cette étude, nous avons identifié un nouvel effecteur dérivé par la granule dense, appelé GRA18, qui est sécrété dans le cytoplasme de cellule hôte par les tachyzoites intracellulaires. La mutation de gra18 résulte une diminution de virulence chez les parasites de type II, qui suggère l’importance de GRA18 dans la pathogénicité de ce parasite. Afin d’étudier le mécanisme d’action de GRA18, nous avons effectué un criblage à haut-débit d’une librairie humaine chez la levure. Ce criblage nous permet d’identifier β-catenin, GSK3α/β, and PP2A-B56, ce qui sont tous les régulateurs bien connus dans la voie de signalisation canonicale de Wnt. Nous avons confirmé l’intéractome de GRA18 par l’approche biochimique. La surexpression de GRA18 induit l’accumulation de β-catenin dans le noyau de la cellule hôte, aussi que l’induition de gènes régulés par la signalisation de Wnt. Ces effets indiquent GRA18 joue un rôle de régulateur positif de β-catenin. A part de son rôle dans la prolifération, polarisation et la différentiation de cellule, β-catenin est également un facteur de transcription connu pour contrôler la réponse immunitaire et l’inflammation. L’analyse transcriptomique en comparant les macrophages dérivés par la moelle osseuse (BMDM) infectés par le sauvage (WT) et le gra18 mutant parasites confirme un rôle possible de GRA18, la modulation d’expression génique de cellule hôte, surtout ceux qui codent pour les chemokines. Cette régulation est ensuite confirmée par l’ELISA. L’hypothèse possible est que Toxoplasma sécrète GRA18 dans la cellule hôte afin de réguler positivement la production de chemokine reliée à la réponse de Th2, qui par contre atténue la réponse inflammatoire de l’hôte. Cette modulation augmente la chance de dissémination et la persistance de ce parasite par la formation de kyste. / Toxoplasma gondii, the obligate intracellular protozoan parasite, is one of the most successful pathogen that infects virtually all warm-blooded animals including humans. This success of the infection is likely due to its perfect ability to modulate numbers of host signaling pathways through the effector proteins, including those involved in immune responses. This modulation allows the parasite to establish a long-term chronic infection without causing severe symptom in the hosts, which facilitates its transmission to the new hosts. In this study, we identified GRA18, as a novel dense granule derived effector protein that is secreted into the cytoplasm of the host cell by the intracellular tachyzoite. GRA18 deficiency in type II strains attenuated the parasite virulence in mice model, suggesting the importance of GRA18 in the parasite pathogenesis. In order to investigate the mechanism of action of GRA18, we first performed a high-throughput two-hybrid screen of a human library in yeast that led to the identification of β-catenin, GSK3α/β, and PP2A-B56, all which are well known regulators of the canonical Wnt signaling pathway. We then validate the GRA18 interactome by biochemistry approach. The overexpression of GRA18 triggers the accumulation of β-catenin in the host cell nuclei as well as the induction of known canonical β-catenin target genes indicating that GRA18 is acting as a positive regulator of β-catenin. Besides its role in cell proliferation, polarization and differentiation, β-catenin is also a well-known co-transcription factor with important function in the control of inflammation and other immune responses. Transcriptomic analysis comparing mouse bone marrow–derived macrophages infected by wild type and GRA18-dificient parasite confirmed a possible role of GRA18 towards host gene expression and likely those encoding chemokines, which is further confirmed by ELISA experiments. An attractive hypothesis is that Toxoplasma delivers GRA18 to the host cell in order to regulate Th2-related chemoattractant chemokines, which in turn, dampens host inflammatory response leaving more chance for the parasites to disseminate and to cause the long-term persistence by forming the cyst.
2

CD8 T cell differentiation during immune responses / Différentiation des cellules T CD8 pendant la réponse immunitaire

Lemos, Sara Sofia de Campos Pereira 23 May 2014 (has links)
Les lymphocytes T CD8 ont un rôle essentiel dans la protection contre les agents pathogènes intracellulaires et la progression tumorale. Ainsi, la compréhension de la diversité des mécanismes de différenciation des lymphocytes T CD8 naïfs en cellules effectrices, ainsi qu’en cellules mémoires compétentes, est fondamentale pour le développement efficace de vaccins à cellules T. Dans ce travail de thèse, nous avons abordé deux questions centrales : (1)Très tôt après l’activation des cellules T CD8, quels sont les mécanismes par lesquels les cellules T effectrices agissent comme effecteurs pro-inflammatoires en recrutant d’autres cellules? Et quel est leur rôle dans la réponse immunitaire? (2) Quel est le rôle du contexte infectieux dans le programme de différenciation des lymphocytes T CD8 ? Est-il responsable de l’hétérogénéité des cellules répondeuses et a-t-il un rôle dans les différents effets protecteurs des cellules mémoires? Afin de répondre à ces questions, nous avons choisit d’utiliser des cellules T CD8 exprimant un récepteur pour l’antigène transgéniques (TCR-Tg) pour suivre la différentiation in vivo des lymphocytes T CD8. De plus, la méthode de RT-PCR sur des séries de cellules uniques, nous a permis d’analyser la co-expression des ARNm dans ces cellules. Comme l’utilisation à haute fréquence de cellules TCR-Tg a été fortement critiquée, nous avons comparé la différenciation de ces cellules avec celle des cellules endogènes (non transgéniques et rares). Dans ce premier manuscrit nous avons observé un comportement similaire, ce qui a renforcé l'avantage d'utiliser des cellules TCR Tg pour étudier les réponses immunitaires des lymphocytes T CD8. De plus, nous avons conclu que la diversité des réponses immunitaires des lymphocytes T CD8 n’est pas conditionnée par la fréquence de cellules naïves. Dans un deuxième manuscrit, nous avons comparé la réponse des cellules OT1 TCR-Tg (spécifiques de l’antigène OVA) à l'infection bactérienne LM-OVA (Listeria Monocytogènes exprimant OVA) avec la réponse des cellules P14 TCR-Tg (spécifiques de l’épitope GP33) à l’infection par le virus LCMV. Nous avons montré que les cellules OT1, stimulées par l’OVA dans un contexte bactérien (LM-OVA), présentent un profil d’expression génique distinct de celui des cellules P14 stimulées par le GP33 dans un contexte viral (LCMV). Nous avons également co-stimulé les cellules P14 et OT1 dans une même souris suivant le même contexte bactérien avec LM-GP33 et LM-OVA. Dans ce cas, nous n’avons pas observé de différence dans le profil d’expression génique. L’ensemble des résultats démontrent que les stimulations spécifiques des cellules T CD8 par différents agents pathogènes génèrent des cellules T CD8 présentant des caractéristiques différentes qui ne sont pas déterminées par la spécificité du TCR mais plutôt par le contexte infectieux. De plus, nous avons montré que les cellules mémoires endogènes résultant de la stimulation des CD8 en présence de LCMV ont été plus efficaces après une deuxième réponse immunitaire que des cellules mémoires générées après stimulation avec LM-GP33 (bactérie). Nous avons également observé que la protection plus efficace dans le contexte viral est associée à des cellules T CD8 qui présentent un phénotype de cellules T mémoires effectrices (TEM) tandis que les cellules T CD8 générées dans un contexte bactérien ont plutôt un phénotype associé aux cellules T mémoires centrales (TCM). Ces résultats démontrent que différents pathogènes induisent différents profils de différentiation des cellules T CD8 et que malgré l’élimination efficace des différents pathogènes dans une réponse primaire, la qualité des cellules mémoires générées au cours de cette réponse peut être différente. Dans un troisième manuscrit, nous avons étudié les mécanismes de recrutement d’autres cellules par les lymphocytes T CD8 activés à un temps précoce de la réponse immunitaire. (...) / CD8 T cells are essential for the elimination of intracellular pathogens and tumor cells. Understanding how naïve CD8 T cells differentiate into effector cells capable of eliminating pathogens and to generate adequate memory cells during immune responses is fundamental for optimal T cell vaccine design. In this PhD thesis work we addressed two central questions: 1) What are the mechanisms by which early effector T cells could act as pro-inflammatory effectors? And what is their role in the immune response? 2) How heterogeneous are CD8 responses? Could different pathogens modulate CD8 T cell differentiation programs and be responsible for CD8 cell-to-cell heterogeneity? Could they also generate memory cells with different protection capacities? To address these questions related to the diversity of CD8 T cell differentiation during immune responses, we used the single cell RT-PCR technique to detect ex vivo expression of mRNA in each individual cell, and Brefeldin A injected mice to detect ex vivo intracellular proteins. As experimental system to evaluate in vivo cell activation we used T cell receptor transgenic (TCR-Tg) CD8 T cells. Since the use of TCR-Tg cells to study immune responses has been subjected to criticism (due to high frequency of naïve-precursor transfers), in a first Ms. we compared the behavior of TCR-Tg and endogenous (non-transgenic and present at low frequency) cells in the same mouse. We found fully overlapping behavior between these two cell populations, which reinforced the advantage of using TCR-Tg cells to study CD8 immune responses. In addition, we concluded that the frequency of naïve-precursors do not induce diversity on CD8 T cell differentiation patterns. In a second Ms. we evaluated the impact of different pathogens in the diversity of CD8 T cell properties during two different immune responses: OT1 TCR-Tg cells (specific for OVA antigen) in the response to LM-OVA (Listeria Monocytogenes expressing OVA) infection; and P14 TCR-Tg cells (specific for GP33 epitope) in the response to Lymphocytic choriomeningitis vírus (LCMV) infection. We found that OT1 and P14 cells had different properties. As this difference could also be attributed to the different TCR avidity between OT1 and P14 cells, we then compared the behavior of P14 and OT-1 cells in the same mouse, co-injected with LM-OVA and LM-GP33. Since no differences were then detected, these results demonstrated that priming with different pathogens generates CD8 T cells with different characteristics that are not determined by TCR usage, but rather by the infection context. In addition, when looking for the protection capacity of endogenous CD8 memory cells generated in bacterial or viral context, we found that memory cells generated after LCMV priming were more efficient in responding to a second challenge, than memory cells generated after LM-GP33 priming. We also found that this better protection is associated with a T cell effector memory (TEM) phenotype associated with the LCMV infection, in contrast with a T cell central memory (TCM) phenotype generated after LM-OVA infection. These results demonstrate that different pathogens are responsible for diversity of CD8 T cell differentiation patterns and that even when distinct pathogens are efficiently eliminated during the primary immune response the quality of the memory generated may differ. In a third Ms. we studied the mechanisms by which effector CD8 T cells attracted other cell types in the early days of an immune response. We used two experimental systems: the response of OT1 TCR-Tg cells to LM-OVA infection; and the response of anti-HY TCR-Tg cells to male cells (“sterile”-non infectious context). In both cases we found that immediately after activation, CD8 T cells expressed high levels of pro-inflammatory cytokines and chemokines (such as TNFα, XCL1, CCL3 and CCL4). (...)

Page generated in 0.0418 seconds