• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Urotensin-II Regulates Intracellular Calcium in Dissociated Rat Spinal Cord Neurons

Filipeanu, Catalin M., Brailoiu, Eugen, Le Dun, Siok, Dun, Nae J. 01 November 2002 (has links)
Urotensin-II (U-II), a peptide with multiple vascular effects, is detected in cholinergic neurons of the rat brainstem and spinal cord. Here, the effects of U-II on [Ca2+]i, was examined in dissociated rat spinal cord neurons by fura 2 microfluorimetry. The neurons investigated were choline acetyltransferase-positive and had morphological features of motoneurons. U-II induced [Ca2+]i, increases in these neurons with a threshold of 10-9 M, and a maximal effect at 10-6 M with an estimated EC50 of 6.2 × 10-9 M. The [Ca2+]i increase induced by U-II was mainly caused by Ca2+ influx from extracellular space, as the response was markedly attenuated in a Ca2+-free medium. Omega-conotoxin GVIA (10-7 M), a N-type Ca2+ channel blocker, largely inhibited these increases, whereas the P/Q Ca2+ channel blocker, omega-conotoxin GVIIC (10-7 M) and the L-type Ca2+ channel blocker, verapamil (10-5 M) had minimal effects. Down-regulation of protein kinase C by 4-α-phorbol 12-myristate 13-acetate (10-6 M) or enzyme inhibition using the specific inhibitor bisindolylmaleimide I (10-6 M) did not inhibit the observed effects. Similarly, inhibition of protein kinase G with KT5823 (10-6 M) or Rp-8-pCPT-cGMPS (3 × 10-5 M) did not modify U-II-induced [Ca2+]i increases. In contrast, protein kinase A inhibitors KT5720 (10-6 M) and Rp-cAMPS (3 × 10-5 M) reduced the response to 25 ± 3% and 42 ± 8%, respectively. Present results demonstrate that U-II modulates [Ca2+]i, in rat spinal cord neurons via protein kinase A cascade.

Page generated in 0.0224 seconds