• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] ACOUSTIC PERTURBATIONS IMPOSED ON TURBULENT INTERNAL FLOWS: A THEORETICAL-EXPERIMENTAL STUDY IN A CIRCULAR PIPE / [pt] PERTURBAÇÕES ACÚSTICAS IMPOSTAS EM ESCOAMENTOS TURBULENTOS INTERNOS: UM ESTUDO TEÓRICO-EXPERIMENTAL NUM DUTO CIRCULAR

LUIS MANUEL DE MEXIA HEITOR DE MEDEIROS PORTELLA 26 March 2019 (has links)
[pt] Neste trabalho é apresentado um estudo teórico-experimental da propagação de perturbações acústicas num escoamento de ar, em regime turbulento e subsônico, no interior de um duto circular (comprimento 3000mm, diâmetro 50,8mm). Introduziram-se perturbações senoidais no escoamento, por intermédio de um alto-falante colocado na parede de uma câmara de estabilização, situada a montante do tubo de teste. Estudou-se a propagação da onda ao longo do escoamento e os efeitos da mesma nas distribuições de pressão, de velocidade e de intensidade de turbulência. Realizaram-se experimentos, em regime hidrodinâmico caracterizado por um número de Reynolds 70000, introduzindo perturbações acústicas no escoamento correspondentes à primeira e segunda frequências de ressonância do tubo, respectivamente, 56Hz e 112Hz (números de Strouhal 0,13 e 0,26). A 56Hz, a intensidade da perturbação acústica foi 3 por cento (valor eficaz da onda de velocidade, na frequência de perturbação, na entrada do tubo, normalizada na velocidade média na seção de entrada no centro do tubo); a 112Hz aplicaram-se duas intensidades de perturbação, 3 por cento e 18 por cento. Em várias posições ao longo do tubo, foram medidos, entre r/R=0 e r/R=0,96, os perfis transversais da velocidade média temporal, da intensidade da turbulência e do componente de onda. A distribuição de pressão foi medida por intermédio de tomadas de pressão posicionadas ao longo da parede do tubo. Foi estudada, teoricamente, a propagação da onda ao longo do tubo, considerando um modelo sem dissipação e, outro, com dissipação. Os resultados experimentais confirmaram as estimativas de dissipação baseadas no modelo, segundo as quais, nas condições do caso estudado (designadamente para a faixa de frequências de perturbação consideradas, e comprimento do tubo da ordem do comprimento de onda), a dissipação tem um efeito bastante moderado na propagação da onda. Nestas condições, grande parte dos aspectos do comportamento da onda é interpretada a partir do modelo sem dissipação, que mostrou boa concordância com os resultados experimentais. O modelo com dissipação permitiu interpretar alguns aspectos essencialmente ligados à dissipação, designadamente o comportamento da onda na vizinhança da ressonância e os perfis transversais da onda de velocidade, e interpretar as razões da validade aproximada, no caso estudado, no modelo sem dissipação. As diferenças entre o comportamento previsto pelos modelos apresentados e os resultados experimentais foram da ordem de grandeza dos erros de medida. Com base na análise efetuada, afigura-se que, para as condições estudadas, nem as estruturas de turbulência afetam significativamente a onda acústica, nem as perturbações acústicas impostas afetam significamente as características do escoamento turbulento (velocidade média temporal, intensidade de turbulência e distribuição de pressão estatística). Afigura-se, assim, que uma aproximação linear, baseada na técnica da superposição, usada nos modelos teóricos apresentados, é apropriada para descrever o escoamento turbulento resultante da aplicação da perturbação acústica. / [en] In this work, it is presented a theoretical-experimental study of acoustic perturbations propagation, in turbulent, subsonic, air flow in a circular pipe (lenght: 3000mmm; diameter: 50,8mm). Sinusoidal perturbations were introduced in the flow, by means of a loud-speaker, placed at the wall of a settling chamber, upstream of the test pipe. The wave propagation along the flow was studied, as well as its effects on pressure, velocity and turbulance intensity distributions. The experiments were conducted at flow Reynolds Number 70000, introducing acoustic perturbations corresponding to the first and second resonant frequencies of the pipe, namely 56Hz and 112Hz (Strouhal Numbers 0.13 and 0.26). At 56Hz the intensity of the acoustic perturbation was 3 percent (r.m.s. value of the wave component of the velocity, at the perturbation frequency, at the pipe entrance, normalized by the pipe entrance centerline mean velocity); at 112Hz two perturbation intensities were applied: 3 percent and 18 percent. The mean velocity, turbulance intensity and wave component profiles were measured at several stations along the pipe, between r/R=0 and r/R=0,96. The wave propagation along the pipe was theoretically studied. Two models were considered, a model without dissipation and a model with dissipation. The experimental results confirmed the dissipation estimates based on the model, and have shown that, for the studied case conditions (namely for the frequency range considered, and pipe lenght of the order of the wave lenght), the dissipation has a moderate effect on the wave propagation. So, a great part of the wave behavior is a interpreted on the basis of the model without dissipation, that has shown good agreement with the experimental results. The model with dissipation allows to intepret some aspects strongly connected with dissipation, namely the wave behavior in the vicinity of the ressonance and the transversal profiles of the wave component of the velocity, in the studied case, of the model without dissipation. The differences between the behavior forseen by the presented models, and the experimental results, were of the order of magnitude of the measurement errors. According to the analysis performed, it appears that, for the studied conditions, neither the turbulance structure significantly affects the acoustic wave, nor the acoustic perturbations significantly affect the turbulent flow characteristics (mean velocity, turbulance intensity and pressura distribution). So, it appears that, a linear approach, based on a superposition technique, used in the presented theoretical models, is adequate to describe the overall disturbed turbulent flow.

Page generated in 0.0269 seconds