• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 7
  • 4
  • Tagged with
  • 61
  • 61
  • 61
  • 18
  • 15
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Undersea acoustic propagation channel estimation /

Dessalermos, Spyridon. January 2005 (has links) (PDF)
Thesis (M.S. in Electrical Engineering and M.S. in Applied Physics)--Naval Postgraduate School, June 2005. / Thesis Advisor(s): Joseph Rice, Roberto Cristi. Includes bibliographical references (p. 117-119). Also available online.
22

Multichannel blind estimation techniques : blind system identification and blind source separation /

Rahbar, Kamran. Reilly, James Park. January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2003. / Advisor: James P. Reilly. Includes bibliographical reference (leaves 142-151). Also available via World Wide Web.
23

Detection guided adaptive filtering for multipath effects in communication systems /

Wu, Yan Jennifer. January 1900 (has links) (PDF)
Thesis (M.Phil.) - University of Queensland, 2006. / Includes bibliography.
24

Adaptive Filter Bank Time-Frequency Representations

January 2012 (has links)
abstract: A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of optical filters. Another well-known TFR is the short time Fourier transform (STFT). Its discrete version can be shown to be equivalent to a filter bank, an array of bandpass filters that enable localized processing of the analysis signals in different sub-bands. This work proposes a signal-adaptive method of generating TFRs. In order to minimize distortion in analyzing a signal, the method modifies the filter bank to consist of non-overlapping rectangular bandpass filters generated using the Butterworth filter design process. The information contained in the resulting TFR can be used to reconstruct the signal, and perfect reconstruction techniques involving quadrature mirror filter banks are compared with a simple Fourier synthesis sum. The optimal filter parameters of the rectangular filters are selected adaptively by minimizing the mean-squared error (MSE) from a pseudo-reconstructed version of the analysis signal. The reconstruction MSE is proposed as an error metric for characterizing TFRs; a practical measure of the error requires normalization and cross correlation with the analysis signal. Simulations were performed to demonstrate the the effectiveness of the new adaptive TFR and its relation to swept-tuned spectrum analyzers. / Dissertation/Thesis / M.S. Electrical Engineering 2012
25

Contributions to Robust Adaptive Signal Processing with Application to Space-Time Adaptive Radar

Schoenig, Gregory Neumann 04 May 2007 (has links)
Classical adaptive signal processors typically utilize assumptions in their derivation. The presence of adequate Gaussian and independent and identically distributed (i.i.d.) input data are central among such assumptions. However, classical processors have a tendency to suffer a degradation in performance when assumptions like these are violated. Worse yet, such degradation is not guaranteed to be proportional to the level of deviation from the assumptions. This dissertation proposes new signal processing algorithms based on aspects of modern robustness theory, including methods to enable adaptivity of presently non-adaptive robust approaches. The contributions presented are the result of research performed jointly in two disciplines, namely robustness theory and adaptive signal processing. This joint consideration of robustness and adaptivity enables improved performance in assumption-violating scenarios—scenarios in which classical adaptive signal processors fail. Three contributions are central to this dissertation. First, a new adaptive diagnostic tool for high-dimension data is developed and shown robust in problematic contamination. Second, a robust data-pre-whitening method is presented based on the new diagnostic tool. Finally, a new suppression-based robust estimator is developed for use with complex-valued adaptive signal processing data. To exercise the proposals and compare their performance to state- of-the art methods, data sets commonly used in statistics as well as Space-Time Adaptive Processing (STAP) radar data, both real and simulated, are processed, and performance is subsequently computed and displayed. The new algorithms are shown to outperform their state-of-the-art counterparts from both a signal-to-interference plus noise ratio (SINR) convergence rate and target detection perspective. / Ph. D.
26

Robust GMSK Demodulation Using Demodulator Diversity and BER Estimation

Laster, Jeffery D. 28 January 1997 (has links)
This research investigates robust demodulation of Gaussian Minimum Shift Keying (GMSK) signals, using demodulator diversity and real-time bit-error-rate (BER) estimation. GMSK is particularly important because of its use in promi- nent wireless standards around the world (GSM, DECT, CDPD, DCS1800, and PCS1900). The dissertation begins with a literature review of GMSK demodu- lation techniques (coherent and noncoherent) and includes an overview of single- channel interference rejection techniques in digital wireless communications. Vari- ous forms of GMSK demodulation are simulated, including the limiter discrimina- tor and di erential demodulator (i.e., twenty-five variations in all). Ten represent new structures and variations. The demodulator performances are evaluated in realistic wireless environments, such as additive white Gaussian noise, co-channel interference, and multipath environments modeled by COST207 and SMRCIM. Certain demodulators are superior to others for particular channel impairments, so that no demodulator is necessarily the best in every channel impairment. This research formally introduces the concept of demodulator diversity, a new idea which consists of a bank of demodulators which simultaneously demodulate the same signal and take advantage of the redundancy in the similar signals. The dissertation also proposes practical real-time BER estimation techniques which have tremendous ramifications for communications. Using Parzen's estimator for probability density functions (pdfs) and Gram-Charlier series approximation for pdfs, BER can be estimated using short observation intervals (10 to 500 training symbols) and, in some cases, without any training sequence. We also introduce new variations of Gram-Charlier estimation using robust estimators. BER (in place of MSE) can now drive adaptive signal processing. Using a cost function and gradient for Parzen's estimator (derived in this paper), BER estimation is applied to demodulator diversity with substantial gains of 1-10 dB in carrier- to-interference ratio over individual receivers in realistic channels (with adaptive selection and weighting). With such gains, a BER-based demodulator diversity scheme can allow the employment of a frequency reuse factor of N = 4, instead of N = 7, with no degradation in performance. A lower reuse factor means more channels are available in a cell, thus increasing overall capacity. The resulting techniques are simple and easily implemented at the mobile. BER estimation techniques can also be used in BER-based equalization and dynamic allocation of resources. / Ph. D.
27

Parametric design of an adaptive line enhancer for multiple switching tones in a correlated noise environment

Ritter, Robert D. 13 October 2010 (has links)
This thesis demonstrates how a Fast Gradient approximation to a Lattice Filter can be used as an Adaptive Line Enhancer for sampled data consisting of multiple switching tones in correlated noise. A tradeoff analysis is performed with four methods of digital filtering including a conventional Digital Fourier Transform (DFT) algorithm, a Least Mean Squares (LMS) adaptive algorithm, a Fast Recursive Least Squares (Fast RLS) adaptive algorithm, and the Fast Gradient adaptive algorithm. The DFT algorithm is incapable of removing correlations from the incoming noise, and the LMS and Fast RLS algorithms become unstable when a dynamic switching environment is being filtered. The Fast Gradient adaptive algorithm simulated on a computer is robust and capable of converging to an optimal set of FIR filter weights with minimum Mean Squared Error. Parameters for the Fast Gradient algorithm are optimized to provide good filter performance with a minimum number of computations. / Master of Science
28

ANTI-INTERFERENCE STRATEGY AND THE SAFETY OF SPREAD SPECTRUM UNIFIED TT&C SYSTEM

Jian, Zhang, Junxin, Ge, Futang, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In this paper, the basic ideas of advanced Spread Spectrum Unified Tracking Telemetry & Command System are introduced, the approaches and strategies to reject narrowband interference, multiple access interference and multipath interference are discussed. With effective interference-rejection, the safety and robustness of SS-UTTCS will be improved enormously.
29

A low-cost, high rate motion measurement system for an unmanned surface vehicle with underwater navigation and oceanographic applications

Unknown Date (has links)
Standard GPS receivers are unable to provide the rate or precision required when used on a small vessel such as an Unmanned Surface Vehicles (USVs). To overcome this, the thesis presents a low cost high rate motion measurement system for an USV with underwater and oceanographic purposes. The work integrates an Inertial Measurement Unit (IMU), a GPS receiver, a flux-gate compass, a tilt sensor and develops a software package, using real time data fusion methods, for an USV to aid in the navigation and control as well as controlling an onboard Acoustic Doppler Current Profiler (ADCP).While ADCPs non-intrusively measure water flow, they suffer from the inability to discriminate between motions in the water column and self-motion. Thus, the vessel motion contamination needs to be removed to analyze the data and the system developed in this thesis provides the motion measurements and processing to accomplish this task. / by Chrystel Gelin. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
30

Characterizing the Magnetic Signature of Internal Waves

Unknown Date (has links)
This study is performed in tandem with numerous experiments performed by the U.S. Navy to characterize the ocean environment in the South Florida region. The research performed in this study includes signal processing steps for isolating ocean phenomena, such as internal waves, in the magnetic field. Raw magnetometer signals, one on shore and one underwater, are processed and removed of common distortions. They are then run through a series of filtering techniques, including frequency domain cancellation (FDC). The results of the filtered magnetic residual are compared to similarly processed Acoustic Doppler Current Profiler (ADCP) data to correlate whether a magnetic signature is caused by ocean phenomena. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.037 seconds