• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 58
  • 18
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 39
  • 38
  • 32
  • 23
  • 22
  • 22
  • 21
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Improvement of alumina mechanical and electrical properties using multi-walled carbon nanotubes and titanium carbide as a secondary phase

Nyembe, Sanele Goodenough 04 October 2013 (has links)
Thesis (M.Sc.(Engineering)--University of the Witwatersrand, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, 2012,. / The objective of this research was to improve alumina (Al2O3) mechanical and electrical properties by reinforcement using multi-walled carbon nanotubes (MWCNTs) and titanium carbide (TiC). The objective of the study was achieved with interesting and challenging difficulties along the way. The MWCNTs were initially coated with boron nitride (hBN) in order to improve the Alumina-CNTs interface which was previously discovered to be weak and also to protect them from reacting with Al2O3 during sintering. The coating of CNTs with hBN was done using nitridation method. This method was unsuccessful since it was not possible to coat each CNT individually. Dispersing hBN coated CNTs proved to be impossible without pealing the off the hBN coating. The “flaking off “of the hBN coating from the CNTs revealed that the CNT-hBN interface was weak; therefore uncoated CNTs were used for this study. The starting powders (Al2O3, TiC and CNTs) were individually dispersed before they were mixed together. TiC and Al2O3 were dispersed using an ultrasonic probe which was done successfully. The CNTs were dispersed by an ultrasonic probe and then attritor milled with the use of polyvinylpyrolidone (PVP) as a dispersant. The dispersed Al2O3 and TiC (30 wt%) powders were mixed in a planetary ball mill. The composite powder was sieved and sintered using SPS with temperature and pressure programmed to be 1700˚C, 35MPa respectively. In making the Al2O3+CNT composite powder, the already dispersed Al2O3 and CNTs (1 wt%) were mixed in a planetary ball mill, after sieving the powder it was sintered using SPS at 1600˚C, 35MPa (programmed conditions). Lastly in making the Al2O3+CNT+TiC composite, the already dispersed TiC, CNTs and Al2O3 were all mixed in a planetary ball mill, after sieving it was sintered using SPS at 1650˚C, 35MPa (programmed conditions). For comparison of properties, dispersed monolithic Al2O3 was also sintered using SPS at 1600˚C, 35 MPa. The density results showed that the monolithic Al2O3 was 99.8% dense, , Al2O3+CNTs was 99.4%, Al2O3+TiC+CNTs was 99.2% and Al2O3+TiC sample was 99.0%. The mechanical properties of the samples were measured using the indentation method. The hardness and fracture toughness of the samples were; Al2O3= 3.3MPa√m (17 GPa), Al2O3+CNTs = 4.2MPa√m (18 GPa), Al2O3+TiC = 4.8 MPa√m (23 GPa) and Al2O3+TiC+CNT= 5.0 MPa√m (23 GPa). The electrical properties showed that incorporating CNTs and TiC into Al2O3 improved Al2O3 electrical conductivity. The measured electrical conductivity of the ceramic samples were; Al2O3 iii ≈ 0 Sm-1, Al2O3+CNTs= 30 S.m-1, Al2O3 +TiC + CNTs = 6855 S.m-1 and Al2O3+TiC = 9664 S.m-1. The CNTs improved Al2O3 mechanical properties slightly inhibiting grain growth by pinning the grain boundary movement and also by crack bridging. The Al2O3 electrical conductivity was increased by the CNTs network that was located along the alumina grain boundaries. The TiC improved Al2O3 mechanical properties slightly inhibiting grain growth and through crack deflection mechanism. The addition of TiC into Al2O3 increased the electrical conductivity by serving as a conducting continuous secondary phase. The results show that the CNT-hBN interface is weak. The addition of CNTs and TiC into monolithic Al2O3 slightly improved its mechanical and electrical properties but it density was slightly compromised. CNTs and TiC slightly improved monolithic alumina hardness by in inhibiting Al2O3 grain growth and the fracture toughness through crack deflection and crack bridging mechanisms. The CNTs network located at the Al2O3 grain boundaries not only aided in improving Al2O3 hardness but also served as transport medium for electrons hence increasing the Al2O3 electrical conductivity. Addition of TiC into Al2O3 increased its electrical conductivity by conducting electrons from one TiC grain to the adjacent grain. The large increase in electrical conductivity upon addition of TiC is due to the presence of a continuous TiC phase within Al203.
32

Template-based fabrication of nanostructured materials

Johansson, Anders. January 2006 (has links) (PDF)
Thesis (Ph. D.)--Uppsala universitet, 2006. / Description based on contents viewed Feb. 5, 2007; title from title screen. Includes bibliographical references (p. 53-57).
33

Fabrication of self-assembly porous alumina and its applications

Tsai, Kun-Tong 10 July 2006 (has links)
In this thesis, the growth and fabrication of the self-assembly ordered porous alumina have been investigated. First, well-ordered honeycomb array can be obtained in large area under well-anodizing condition. The diameter of formed porous alumina was about 40 to 80 nm. Pore diameter can be tuned by different voltage and electrolyte. After we got such an ordered-arrangement porous alumina array, the following analysis of the material optical properties were characterized. In the luminescence behavior, photoluminescence (PL) measurements showed a strong PL peak in blue. The PL peak was at 420 nm excited by He-Cd laser. Material transmittance was also detected, the result showed that material was transparent above 400 nm. On the other hand, the porous alumina membrane can be used as a mask. For working as negative mask, we evaporated the metal such as Au or Ti into the membrane and the metal filled into the porous to adhere to the semiconductor substrate. After lifting-off the membrane, the metal nanadots was formed on the substrate. The size and the position of these metal nanodots were distinctly-controlled by the mask. For working as replica mask, we have used the membrane as an etching mask to transfer the pattern to the semiconductor substrate successfully. This technique has the advantages of low cost and large area for nano-fabrication.
34

Catalytic Oxidation of Toluene in an Air Stream over granular Catalysts

Hsu, Chao-hsiang 18 July 2007 (has links)
Abstract Aluminum oxide was utilized as a carrier of active metals copper and manganese. Catalysts with various metal ratios and weight loadings were produced by incipient impregnation to treattoluene. From the 24 catalysts we prepared, this investigation selected the most effective catalyst, based on the conversion rate of toluene and CO2 yield. The influence of operating parameters of toluene oxidization on the conversion rate and long-term variations in catalytic activity were investigated, and the physical properties of catalysts were determined by SEM and XRD. The conversion rate for toluene and CO2 yield reached 95% when the Cu/Mn catalyst was used with a metal ratio of 1:1 and 20% loading at 350¢XC, an influent toluene concentration of 1000ppm, oxygen concentration of 21%, a space velocity of 12000 hr-1, and relative humidity of 26%. The toluene conversion rate increased as reaction temperature and influent concentration of oxygen increased, but decreased as the initial toluene concentration and space velocity increased. The long-term test proceeded for seven days at a constant influent toluene concentration of 1000ppm, constant oxygen concentration of 21%, constant space velocity of 12000hr-1 and constant relative humidity of 26%. The stability of the Cu/Mn catalyst structure was assessed. Differences between fresh and aged catalysts were analyzed using analytical instruments such as SEM, and XRD. No obvious deactivation of the catalytic surface was detected. Keywords aluminum oxide, Cu/Mn catalyst, toluene, and operational parameters
35

Optical Application of Anodic Aluminum Oxide

Chien, Wei-han 29 July 2008 (has links)
Abstract The AAO membrane with nanopore arrays were fabricated by anodizing highly pure aluminum foils (99.9995%) in electrolyte under steady voltage. Pore diameter can be controlled by different anodic voltage(from 30 to 50 V) and electrolyte, on the other hand, thickness is proportioned to anodizing time , and interpore could follow this rule(a = 15.4+2.63¡Ñv) , and minimum radius of pore could reach 15nm . The XRD spectra of AAO without and with annealing, both showed the diffraction peaks of (311)¡B(400)¡B(440), corresponding to the £^-Al2O3 phase . Before fabricating AAO, we would polish under low temperature and then clean alumina foil in order to reduce surface roughness that is good for better order and regular. Through the use of porous anodic alumina masks, Au nanodot arrays deposited on Si by E-gun with AAO mask. Subsequently, the AAO mask was removed by H3PO4. Under the same procedure, we can fabricate 80nm of the diameter of pore and apply this mask on wafer of laser constructure . Because of regular hexagonal pore array, we may get the photonic crystal effect. During PL experiment, we got the result that AAO could increase light extraction of quantum dot from C237 wafer and controlled emission peak from C238 and C196 wafer and position of peak could shift to 1140nm. We hope nanodot array on wafer of laser structure could control emission peak.
36

An investigation of the deformation of anodic aluminium oxide nano-honeycomb during nanoindentation /

Ng, King-yeung. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 138-139). Also available online.
37

Part I. Surface-enhanced Raman scattering (SERS) methodology and applications to small organic molecules ; Part. II. Luminescence in the Raman spectra of aluminum oxide /

Zuo, Chen, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xiii, 139 p. : ill. Vita. Includes abstract. Includes bibliographical references.
38

Growth of thin film water on [alpha]-Al₂O₃ (0001) and its implications for ice nucleation /

Thomas, Alyssa C. January 2009 (has links)
Thesis (Ph.D.)--Ohio University, June, 2009. / Release of full electronic text on OhioLINK has been delayed until June 1, 2010. Includes bibliographical references (leave 107)
39

Growth of thin film water on [alpha]-Al₂O₃ (0001) and its implications for ice nucleation

Thomas, Alyssa C. January 2009 (has links)
Thesis (Ph.D.)--Ohio University, June, 2009. / Title from PDF t.p. Release of full electronic text on OhioLINK has been delayed until June 1, 2010. Includes bibliographical references (leave 107)
40

Modeling of an aluminum reduction cell for the development of a state estimator

Biedler, Philip. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xi, 172 p. : ill. (some col.). Includes abstract. Includes bibliographical references.

Page generated in 0.0446 seconds