• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5498
  • 3855
  • 479
  • 422
  • 373
  • 349
  • 302
  • 172
  • 128
  • 128
  • 128
  • 128
  • 128
  • 116
  • 73
  • Tagged with
  • 13613
  • 6028
  • 2619
  • 2531
  • 2037
  • 1944
  • 1609
  • 1532
  • 1512
  • 1464
  • 1446
  • 1178
  • 1026
  • 1021
  • 1006
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Command generation for tethered satellite systems

Robertson, Michael James, January 2004 (has links)
Thesis (Ph.D.)--School of Mechanical Engineering, Georgia Institute of Technology, 2005. / Singhose, William, Committee Chair ; Banerjee, Arun, Committee Member ; Chen, Ye-Hwa, Committee Member ; Ebert-Uphoff, Imme, Committee Member ; Olds, John, Committee Member. Includes bibliographical references.
132

Ferramentas de análise inteligente aplicadas ao planejamento e controle na construção naval

Souza, Karen Barañano January 2011 (has links)
Dissertação(mestrado) - Universidade Federal do Rio Grande, Programa de Pós-Graduação em Engenharia Oceânica, Escola de Engenharia, 2011. / Submitted by Lilian M. Silva (lilianmadeirasilva@hotmail.com) on 2013-04-22T00:35:01Z No. of bitstreams: 1 Ferramentas De Análise Inteligente Aplicadas Ao Planejamento E Controle Na Construção Naval.pdf: 3137434 bytes, checksum: 5991e1972c1e49f53d0396ffef49a88c (MD5) / Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2013-06-03T18:48:35Z (GMT) No. of bitstreams: 1 Ferramentas De Análise Inteligente Aplicadas Ao Planejamento E Controle Na Construção Naval.pdf: 3137434 bytes, checksum: 5991e1972c1e49f53d0396ffef49a88c (MD5) / Made available in DSpace on 2013-06-03T18:48:35Z (GMT). No. of bitstreams: 1 Ferramentas De Análise Inteligente Aplicadas Ao Planejamento E Controle Na Construção Naval.pdf: 3137434 bytes, checksum: 5991e1972c1e49f53d0396ffef49a88c (MD5) Previous issue date: 2011 / O objetivo deste trabalho é desenvolver um sistema baseado em inteligência artificial, com o uso de redes neurais artificiais, mais especificamente as arquiteturas de mapas auto-organizáveis utilizando o algoritmo de kohonen para agrupamento e multilayer perceptron (MLP) utilizando o algoritmo backpropagation para classificação de dados, que possibilite a melhoria do agregamento das diferentes partes estruturais dos navios, identificando os diversos elementos de uma família de produtos e os agrupando de acordo com os atributos de projeto e produtivos, utilizando os princípios da tecnologia de grupo de forma a mobilizar recursos específicos (Células de Manufatura) em sua concepção e minimizar custos. Fazendo uma analise dos principais métodos utilizados na construção naval para gerenciamento da produção, bem como as ferramentas aplicadas, são apresentados conceitos relativos à identificação das famílias de produtos intermediários, processos utilizados na construção naval, estrutura analítica do produto, conceitos de manufatura celular e tecnologia de grupo. A metodologia proposta para atender o objetivo deste trabalho, destaca a aplicação de técnicas inteligentes, sendo descrita a função de cada variável envolvida no sistema de agrupamento∕classificação de dados. De forma a contribuir nas funções de planejamento, com ganhos de eficiência na manufatura, facilidade de programação em seqüência de peças de uma mesma família, melhoria no controle do processo, planos de processo e instruções padronizadas, possibilidade de formação de células de manufatura e aumento da qualidade e controle da construção naval. / The objective of this work is to develop a system based on artificial intelligence, using artificial neuralnetworks, more specifically the self-organizing maps architectures, using Kohonen's algorithm for clustering and multilayer perceptron(MLP), using the backpropagation algorithm for data classification, which enables the enhancement of aggregation of different ships'structural parts, identifying the various elements of a products family and grouping them according to the attributes of project and productives, using group technology principles in order to mobilize specific resources(Manufacturing Cells)in its conception and minimize costs. Making an analysis of the main methods used in shipbuilding for production management, as well as the tools used, concepts are presented on the identification of intermediate products families, processes used in shipbuilding, product analytical structure, concepts of cellular manufacturing and group technology. The methodology proposed to serve the study objective highlights the application of intelligent techniques, being described the function of each variable involved in the system of data grouping/classification. In order to help in planning functions, with efficiency gains in manufacturing, ease of programming in sequences of same family parts, improvement in process control, process plans and standardized instructions, possibility of formation of manufacturing cells and increased shipbuilding control and quality.
133

On the Interplay between Mechanical and Computational Intelligence in Robot Hands

Chen, Tianjian January 2021 (has links)
Researchers have made tremendous advances in robotic grasping in the past decades. On the hardware side, a lot of robot hand designs were proposed, covering a large spectrum of dexterity (from simple parallel grippers to anthropomorphic hands), actuation (from underactuated to fully actuated), and sensing capabilities (from only open/close states to tactile sensing). On the software side, grasping techniques also evolved significantly, from open-loop control, classical feedback control, to learning-based policies. However, most of the studies and applications follow the one-way paradigm that mechanical engineers/researchers design the hardware first and control/learning experts write the code to use the hand. In contrast, we aim to study the interplay between the mechanical and computational aspects in robotic grasping. We believe both sides are important but cannot solve grasping problems on their own, and both sides are highly connected by the laws of physics and should not be developed separately. We use the term "Mechanical Intelligence" to refer to the ability realized by mechanisms to appropriately respond to the external inputs, and we show that incorporating Mechanical Intelligence with Computational Intelligence is beneficial for grasping. The first part of this thesis is to derive hand underactuation mechanisms from grasp data. The mechanical coordination in robot hands, which is one type of Mechanical Intelligence, corresponds to the concept of dimensionality reduction in Machine Learning. However, the resulted low-dimensional manifolds need to be realizable using underactuated mechanisms. In this project, we first collect simulated grasp data without accounting for underactuation, apply a dimensionality reduction technique (we term it "Mechanically Realizable Manifolds") considering both pre-contact postural synergies and post-contact joint torque coordination, and finally build robot hands based on the resulted low-dimensional models. We also demonstrate a real-world application on a free-flying robot for the International Space Station. The second part is about proprioceptive grasping for unknown objects by taking advantage of hand compliance. Mechanical compliance is intrinsically connected to force/torque sensing and control. In this work, we proposed a series-elastic hand providing embodied compliance and proprioception, and an associated grasping policy using a network of proportional-integral controllers. We show that, without any prior model of the object and with only proprioceptive sensing, a robot hand can make stable grasps in a reactive fashion. The last part is about developing the Mechanical and Computational Intelligence jointly --- to co-optimize the mechanisms and control policies using deep Reinforcement Learning (RL). Traditional RL treats robot hardware as immutable and models it as part of the environment. In contrast, we move the robot hardware out of the environment, express its mechanics as auto-differentiable physics and connect it with the computational policy to create a unified policy (we term this method "Hardware as Policy"), which allows RL algorithms to back-propagate gradients w.r.t both hardware and computational parameters and optimize them in the same fashion. We present a mass-spring toy problem to illustrate this idea, and also a real-world design case of an underactuated hand. The three projects we present in this thesis are meaningful examples to demonstrate the interplay between the mechanical and computational aspects of robotic grasping. In the Conclusion part, we summarize some high-level philosophies and suggestions to integrate Mechanical and Computational Intelligence, as well as the high-level challenges that still exist when pushing this area forward.
134

EXTENDED ORBITAL FLIGHT OF A CUBESAT IN THE LOWER THERMOSPHERE WITH ACTIVE ATTITUDE CONTROL

Moorthy, Ananthalakshmy Krishna 03 July 2019 (has links)
A wide variety of scientifically interesting missions could be enabled by orbital flight altitudes of 150 – 250 km. For the present work, this range of altitudes is defined as extremely Low Earth Orbit (eLEO). The use of low-cost nanosatellites (mass < 10 kg) has reduced the cost barrier to orbital flight over the last decade and the present study investigates the feasibility of using primarily commercial, off-the-shelf (COTS) hardware to build a nanosat specifically to allow extended mission times in eLEO. CubeSats flying in the lower thermosphere have the potential to enable close monitoring of the Earth’s surface for scientific, commercial, and defense-related missions. The results of this research show that the proper selection of primary and attitude control thrusters combined with precise control techniques result in significant extension of the orbital life of a CubeSat in eLEO, thus allowing detailed explorations of the atmosphere. In this study, the orbit maintenance controller is designed to maintain a mission-averaged, mean altitude of 244 km. An estimate is made of the primary disturbance torque due to aerodynamic drag using a high-fidelity calculation of the rarefied gas drag based on a Direct Simulation, Monte-Carlo simulation. The primary propulsion system consists of a pair of electrospray thrusters providing a combined thrust of 0.12 mN at 1 W. Results of a trade study to select the best attitude control option indicate pulsed plasma thrusters operating at 1 W are preferable to reaction wheels or mangetorquers at the selected altitude. An extended Kalman filter is used for orbital position and spacecraft attitude estimations. The attitude determination system consists of sun sensors, magnetometers, gyroscopes serving as attitude sensors. The mission consists of two phases. In Phase I, a 4U CubeSat is deployed from a 414 km orbit and uses the primary propulsion system to deorbit to an initial altitude within the targeted range of 244 +/- 10 km. Phase I lasts 12.73 days with the propulsion system consuming 5.6 g of propellant to deliver a ∆V of 28.12 m/s. In Phase II the mission is maintained until the remaining 25.2 g of propellant is consumed. Phase II lasts for 30.27 days, corresponding to a ∆V of 57.22 m/s with a mean altitude of 244 km. The mean altitude for an individual orbit over the entire mission was found to vary from a maximum of 252 km to a minimum of 236 km. Using this approach, a primary mission life of 30.27 days could be achieved, compared with 3.1 days without primary propulsion.
135

Development of A Microfluidic-Based Artificial Placenta Type Neonatal Lung Assist Device for Preterm Neonates

Dabaghi, Mohammadhossein January 2019 (has links)
Among all organs, lungs are the last ones to grow and develop fully. As a result, extreme premature neonates may suffer from respiratory failure due to their immature lungs and will require respiratory support in the form of mechanical ventilation or extracorporeal membrane oxygenation (ECMO). In addition, extreme prematurity is recognized as the primary cause of neonatal morbidity and mortality. The conventional standard of care for respiratory support of preterm neonates with respiratory failure are invasive and may lead to long-term morbidities and complications. Hence, a non-invasive respiratory support technique named “Artificial Placenta” has been developed to address the issues and challenges associated with the current technologies. An artificial placenta type device is one designed to provide required oxygenation in room air via non-invasive access to the umbilical vessels without the need of any external pump. In this thesis, microfluidic and microfabrication technologies have been employed in the development of a pumpless neonatal lung assist device (LAD) for preterm neonates in two approaches: 1) design and develop novel microfabrication techniques to fabricate advanced microfluidic blood oxygenators with high gas exchange capacity and reduced form factor and 2) design and construct several modular LADs based on the oxygenators that were developed to fulfill the required gas transfer needs for these babies. The new microfluidic blood oxygenators with double-sided gas transfer channels were found to enhance oxygenation up to 343 % in room air and be easily scaled-up to achieve higher gas exchange capacities without a noticeable increase in priming volume. Furthermore, this microfabrication method has been utilized to make the largest all PDMS ultra-thin double-sided blood oxygenator with higher gas exchange capabilities. Also, a novel composite material made of PDMS and PTFE was introduced that conferred high flexibility to the oxygenator to decrease the form factor of such devices. This device was one of the first microfluidic blood oxygenators with enough flexibility to be deformed, bent, or rolled without limitation and losing its functionality. In order to satisfy the gas transfer need of these preterm neonates, few microfluidic-based modular LADs were constructed to support different birth weights up to 2 kg. The main design criteria for such a LAD in this research was low pressure drops (capable of being operated by a baby’s heart), an oxygen transfer of 1.3 – 1.9 mL min-1 kg-1 of body weight (or an increase in oxygen saturation level from ~ 75 % to ~ 100 % and ideally in room air), and low priming volume (less than 10 % of the total blood volume of a baby). These LADs first were evaluated in vitro to measure their gas exchange capacities and those which could meet needed oxygenation would be tested in vivo. For the first time, it was shown that a pumpless microfluidic-based LAD could support a newborn piglet and provide adequate oxygenation in room air or the oxygen-rich environment. The application of these microfluidic blood oxygenators was not only limited to preterm neonates but also can be used to develop LADs for adult patients. / Thesis / Doctor of Philosophy (PhD)
136

Conflict of interests : the ideas, interests and institutions involved in the development of Canadian satellite policy from 1960-1980

Marston, Wendy January 1991 (has links)
No description available.
137

A HIERARCHICAL SCHEME FOR DECENTRALIZED CONTROL OF A PROSTHETIC LIMB.

Elias, Ronald Edmund. January 1983 (has links)
No description available.
138

Artificial insemination at various intervals after onset of synchronized estrus and induced puberty in beef heifers

Wen, Shang-Hsiang January 2011 (has links)
Typescript. / Digitized by Kansas State University Libraries
139

The place of artificial breeding in Kansas as indicated by prevailing practices among farmers who adopted the service

Shawcroft, Joseph Lyman. January 1953 (has links)
Call number: LD2668 .T4 1953 S53 / Master of Science
140

Aligning Capabilities of Interactive Educational Tools to Learner Goals

Lauwers, Tom 01 May 2010 (has links)
This thesis is about a design process for creating educationally relevant tools. I submit that the key to creating tools that are educationally relevant is to focus on ensuring a high degree of alignment between the designed tool and the broader educational context into which the tool will be integrated. The thesis presents methods and processes for creating a tool that is both well aligned and relevant. The design domain of the thesis is described by a set of tools I refer to as “Configurable Embodied Interfaces”. Configurable embodied interfaces have a number of key features, they: Can sense their local surroundings through the detection of such environmental and physical parameters as light, sound, imagery, device acceleration, etc. Act on their local environment by outputting sound, light, imagery, motion of the device, etc. Are configurable in such a way as to link these inputs and outputs in a nearly unlimited number of ways. Contain active ways for users to either directly create new programs linking input and output, or to easily re-configure them by running different programs on them. Are user focused; they assume that a human being is manipulating them in some way, through affecting input and observing output of the interface. Spurred by the growth of cheap computation and sensing, a large number of educational programs have been built around use of configurable embodied interfaces in the last three decades. These programs exist in both formal and informal educational settings and are in use from early childhood through adult and community education. Typically, configurable embodied interfaces are used as tools in three major and sometimes overlapping areas: computer Science education, creative and engineering design education, and traditional science and math education. This work details three examples of collaborations between technologists and educators that led to the creation of educationally successful tools; these three examples share a focus on creating a configurable embodied interface to tackle a specific cognitive and affective set of learning goals, but differ completely in the location of the learning environment, the age and interests of the learners, and the nature of the learning goals. Through the exploration of the methods used, an analysis of the general and context-specific features of the design processes of the three accounts, and a comparison of the process used in this thesis to a conventional engineering design process, this work provides case studies and a set of guidelines that can inform technologists interested in designing educationally relevant embodied interfaces

Page generated in 0.0325 seconds