• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5498
  • 3855
  • 479
  • 422
  • 373
  • 349
  • 302
  • 172
  • 128
  • 128
  • 128
  • 128
  • 128
  • 116
  • 73
  • Tagged with
  • 13613
  • 6028
  • 2619
  • 2531
  • 2037
  • 1944
  • 1609
  • 1532
  • 1512
  • 1464
  • 1446
  • 1178
  • 1026
  • 1021
  • 1006
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

An object oriented interactive simulator for discrete event systems in a temporal logic framework.

Sisiruca, Alfredo. January 1994 (has links)
As more sophisticated systems are being developed, powerful approaches for modeling their behavior and test their reliability are necessary. The research work in this thesis takes on the problem of building a Graphical Programming Environment that permits to create models of DESs in a timed temporal logic framework and simulate the DES models in real-time using an object oriented environment through the interconnection of visual symbols. A temporal logic framework is developed to write the formal models of the temporal references of DESs. This approach is enhanced by the inclusion of a global clock variable to add real-time properties to the formal specifications of real-time DESs. The interactive visual environment allows the programmer to activate graphical symbols by means of menu selections. The graphical symbols are grouped into classes which are eventually properly interconnected, parsed and mapped into source code written in the timed temporal logic language. A knowledge-based system is composed of knowledge databases (database of facts and database of rules), These databases, representing the system behavior, can be created using this tool, for which a reasoning mechanism is required. An inference engine is designed to interpret these knowledge databases. An OO programming language is used, Objective-C. It is used throughout the design, however, when using the tool, the user does not notice the underlying programming language, in other words, the programming language is transparent to the user. The Graphical Programming Environment designed in this thesis can be used to build the specifications of real-time DESs. Different knowledge databases have been created using this interactive tool for three examples to verify their behaviors, such examples are: The ABP communication protocol, the packet-switched communication protocol, and the telephone system.
72

Formal specification and feature interaction detection in the intelligent network.

Kamoun, Jalel. January 1996 (has links)
Over the past few years, the subject of Intelligent Network (IN) has captured the interest of the telecommunications community. The objective of IN is to allow the introduction of new capabilities in the telecommunications network and to facilitate and accelerate in a cost-effective manner, service implementation and provisioning, in a multivendor environment. However, this objective confronts a major obstacle known as the feature interaction problem. The feature interaction problem occurs when a feature is prevented from performing its functionalities in the presence of other features. In the first part of the thesis, we describe a LOTOS model for structuring the Functional Entities (FEs) that are defined in the Distributed Functional Plane (DFP) of the CS1 IN Conceptual Model (INCM), and that are involved in the establishment of a call/connection and invocation and processing of services. The specification of IN services is achieved using Service Independent building Blocks (SIBs). It is designed in a way that independent specification and rapid introduction of services is provided. In the second part of the thesis, a method for detecting feature interactions between services is developed. The method is limited to the detection of interactions caused by violation of features properties. It is based on formalization of feature's properties, derivation of goals satisfying the negation of these properties and use of Goal Oriented Execution to detect traces satisfying these goals. A trace satisfying a goal shows that an interaction exists between the specified features by describing a scenario violating one of the properties of the introduced features. It is concluded that LOTOS is useful as a Formal Description Technique (FDT) in the Service Creation Environment (SCE). The developed specification can be used for adding specifications of new services, and for detecting interactions caused by violation of properties, if there are any.
73

The heat conductivity of synthetic rubber at low temperatures

Ivey, Donald Glenn January 1946 (has links)
[No abstract submitted] / Science, Faculty of / Physics and Astronomy, Department of / Graduate
74

The thermal conductivity of butyl rubber at low temperatures

Thompson, William Bell January 1947 (has links)
The thermal conductivity of GR-I gum stock was measured with an improved apparatus. The thermal conductivity of butyl decreases with temperature showing a double value at temperatures between 0°C and -80°C. Stock containing 10% sulphur showed no hysteresis character, and the conductivity changed only slightly over the temperature range. For the stretched stock a hysteresis loop was found. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
75

Learning recursive definitions in prolog.

Rios, Riverson. January 1998 (has links)
Inductive Logic Programming (ILP) is one of the new and fast growing sub-fields of artificial intelligence. Given a specification language, the goal is to induce a logic program from examples of how the program should work (and also of how it should not work). One main difficulty of ILP lies in learning recursively defined predicates. Today's systems strongly rely on a set of supporting predicates known as the background knowledge that helps define the recursive clause. The dependence on background knowledge has its drawbacks in that it is assumed that the user knows in advance what sort of predicates are required by the target definition. Predicate invention, a research topic that has received a lot of attention lately, can remedy the situation by extending the specification language with new concepts, which appear neither in the examples nor in the background knowledge, and finding a definition for them. A serious concern is that no examples of the invented predicate are explicitly given but rather of the target predicate, so learning has to be done in the absence or scarcity of examples. This research is concerned with the problem of learning recursive definitions based on inverting clausal implication from a small data set. The aim is both to derive an autonomous learning method that can invent the recursive predicates it needs, and to implement it in an efficient manner. Experiments show that the system is capable of finding a correct definition of many relations by inventing the necessary predicates, but does not perform very well on random examples. A comparison between several similar systems that learn recursive definitions of a single predicate is shown. We also show the need for system-generated negative examples and discuss several pitfalls of predicate invention and the absence/scarcity of examples.
76

DEPARS: Design Pattern Recognition System.

Sun, Te-Wei. January 1997 (has links)
The industry has widely accepted the concept of design patterns to promote quality design reuse in the recent years. However, there are several problems preventing design patterns being used efficiently and effectively. The design pattern recognition system, DEPARS, discussed in this dissertation relieves these problems and promotes design pattern reuse. DEPARS recognizes patterns in object models by matching to templates in the knowledge base. DEPARS arranges the templates in the knowledge base in a hierarchy such that templates close to the root of the hierarchy are the bases of the ones below. The hierarchy reduces DEPARS's matching effort because it narrows the search area. DEPARS provides information about the recognized patterns to designers. This information helps designers to apply appropriate patterns in designs. DEPARS has pattern mining capability. DEPARS recognizes new patterns that may be reusable in the future from existing designs. In addition, DEPARS also facilitates designers verifying the recurrence of proto-patterns by storing the proto-patterns in the knowledge base. Once the proto-patterns are in the knowledge base, DEPARS can recognize them in future designs and hence shows the recurrence of the proto-patterns. The dissertation presents the design and operation of DEPARS. The dissertation also reports and discusses the evaluation results of DEPARS. The evaluation shows promising results indicating that DEPARS is adequate for practical use.
77

Developing mobile distributed intelligent network services using RM-ODP.

Rampal, Gaurav S. January 1998 (has links)
The Intelligent Network (IN) is a conceptual model for a service development technology to create telecommunication services. In its current form, IN is limited to service creation in isolated networks and cannot support co-operative service development between two or more networks. Rapid development in networking paradigms and standards has led to an urgent need of finding solutions to the problem of interworking heterogeneous networks. Differing abstraction levels make meaningful exchange of information difficult, and IN has not been able to meet this requirement. The Reference Model for Open Distributed Processing (RM-ODP) is a distributed object based architecture which provides a high level framework for distributed systems. The emphasis is to develop a set of re-usable functional abstractions that can be recombined in various configurations to develop required applications. This work uses RM-ODP framework to supplement deficiencies evident in IN. Two specific aspects are examined and developed. The first is service portability through service profile modeling. A model for service development in a mobile environment, and related concepts of service profile modeling and transfer are developed. The second, IN domain interworking in the ODP framework. A ODP framework for the modeling of this service profile and its migration as the user moves to different domains is proposed. Our approach allows dynamically configured interworking of domains.
78

An analysis of the effect of the rotational, convex, poly-axial, mechanical knee brace (prototype I) : on the stability and dynamic range of motion of the knee joint

Cooke, Christopher January 1977 (has links)
The functional loss of knee stabilitv that results from soft tissue and ligamentous injury is a serious problem for the conpetitive athlete. Non-surgical attempts to restore femoro-tibial stability and function have been centered on the external application of supportive tape and athletic knee braces. Several athletic braces are available on the market today. The more substantial ones, however, have proven ajrtibersane and uncomfortable in their attempts to provide support for the unstable knee. Prototype I of tlie rotational, convex, poly-axial, mechanical knee brace (Taylor Brace) was subjected to testing to deteririine its effect on knee stability and dynamic range of motion. Electrogoniometric recordings of knee function in three mutually perpendicular movement parameters were obtained from each subject at varying speeds of ambulation. Testing was conducted in the laboratory for unbraced and braced conditions using a 2 x 2 collapsible parallelogram chain electrogoniometer. Instant center of rotation pathways and joint surface velocity angles were determined from roentgenogram analysis of the unstable knee for unbraced and braced conditions. Seven medial roentgenograms were taken of the knee with the femur fixed and the tibia moved from ninety degrees of flexion to zero degrees of flexion in increments of fifteen to twenty degrees. Stress analysis was carried out on the unstable knee using a mechanical stress machine. Regulated forces were anplied to the knee joint and radiographic changes in the range of medial and anterior laxity recorded for the unbraced and braced knee. Subjective evaluation was also conducted in which subjects evaluated the Taylor Brace verbally, after each session of activity, and in an overall written assessement at the end of the study. Various aspects of brace construction and function were discussed under pre-determined criteria. Electrogoniometric results showed that the Taylor Brace had a general restraining effect on unwanted internal-external rotation and varus-valgus movement of the knee. Reductions in the flexion-extens range were also recorded but were considered unimportant as a hindrance to total knee function. There was also an indication that the contra-lateral, unbraced knee pattern changed following bracing. There were no consistent trends in the pattern or disoersion of the instant center of rotation pathways following bracing. A consistent shifting posteriorly and superiorly of the individual centers and a change in abnormal joint surface velocity angles, however, was noted following application of the Taylor Brace. Subjective evaluation suggested several minor aspects of brace construction for improvement in future prototypes. Triigh cuff rigidity, tibial abraison and brace slippage were cited as areas for improvement. Knee joint range and articulation was considered excellent as well as ease of application, overall brace comfort, lightness and cosmetics of design. / Education, Faculty of / Curriculum and Pedagogy (EDCP), Department of / Graduate
79

Exploiting structure in coordinating multiple decision makers

Mostafa, Hala 01 January 2011 (has links)
This thesis is concerned with sequential decision making by multiple agents, whether they are acting cooperatively to maximize team reward or selfishly trying to maximize their individual rewards. The practical intractability of this general problem led to efforts in identifying special cases that admit efficient computation, yet still represent a wide enough range of problems. In our work, we identify the class of problems with structured interactions, where actions of one agent can have non-local effects on the transitions and/or rewards of another agent. We addressed the following research questions: (1) How can we compactly represent this class of problems? (2) How can we efficiently calculate agent policies that maximize team reward (for cooperative agents) or achieve equilibrium (self-interested agents)? (3) How can we exploit structured interactions to make reasoning about communication offline tractable? For representing our class of problems, we developed a new decision-theoretic model, Event-Driven Interactions with Complex Rewards (EDI-CR), that explicitly represents structured interactions. EDI-CR is a compact yet general representation capable of capturing problems where the degree of coupling among agents ranges from complete independence to complete dependence. For calculating agent policies, we draw on several techniques from the field of mathematical optimization and adapt them to exploit the special structure in EDI-CR. We developed a Mixed Integer Linear Program formulation of EDI-CR with cooperative agents that results in programs much more compact and faster to solve than formulations ignoring structure. We also investigated the use of homotopy methods as an optimization technique, as well as formulation of self-interested EDI-CR as a system of non-linear equations. We looked at the issue of communication in both cooperative and self-interested settings. For the cooperative setting, we developed heuristics that assess the impact of potential communication points and add the ones with highest impact to the agents’ decision problems. Our heuristics successfully pick communication points that improve team reward while keeping problem size manageable. Also, by controlling the amount of communication introduced by a heuristic, our approach allows us to control the tradeoff between solution quality and problem size. For self-interested agents, we look at an example setting where communication is an integral part of problem solving, but where the self-interested agents have a reason to be reticent (e.g. privacy concerns). We formulate this problem as a game of incomplete information and present a general algorithm for calculating approximate equilibrium profile in this class of games.
80

Super-resolution for Natural Images and Magnetic Resonance Images

January 2020 (has links)
abstract: Image super-resolution (SR) is a low-level image processing task, which has manyapplications such as medical imaging, satellite image processing, and video enhancement, etc. Given a low resolution image, it aims to reconstruct a high resolution image. The problem is ill-posed since there can be more than one high resolution image corresponding to the same low-resolution image. To address this problem, a number of machine learning-based approaches have been proposed. In this dissertation, I present my works on single image super-resolution (SISR) and accelerated magnetic resonance imaging (MRI) (a.k.a. super-resolution on MR images), followed by the investigation on transfer learning for accelerated MRI reconstruction. For the SISR, a dictionary-based approach and two reconstruction based approaches are presented. To be precise, a convex dictionary learning (CDL) algorithm is proposed by constraining the dictionary atoms to be formed by nonnegative linear combination of the training data, which is a natural, desired property. Also, two reconstruction-based single methods are presented, which make use of (i)the joint regularization, where a group-residual-based regularization (GRR) and a ridge-regression-based regularization (3R) are combined; (ii)the collaborative representation and non-local self-similarity. After that, two deep learning approaches are proposed, aiming at reconstructing high-quality images from accelerated MRI acquisition. Residual Dense Block (RDB) and feedback connection are introduced in the proposed models. In the last chapter, the feasibility of transfer learning for accelerated MRI reconstruction is discussed. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2020

Page generated in 0.2124 seconds