Spelling suggestions: "subject:"[een] AXIAL VIBRATION"" "subject:"[enn] AXIAL VIBRATION""
1 |
Application of optimal control in a vibrating rod and membraneJou, Yung-Tsan January 1995 (has links)
No description available.
|
2 |
Oscillatory behaviour and strategy to reduce drilling vibrationChe Kar, Suriani Binti January 2017 (has links)
Drill String dynamic behaviour during the oil drilling operation, was a major source for the failure of the Bottom Hole Assembly (BHA). The behaviour produced torsional vibration, which underpins the stick slip phenomena. Besides threatening the safety of the oil drilling process, such failure cause interruptions in the drilling operations and incurred high maintenance cost to the oil drilling company. This issue can be resolved with the implementation of the optimum control mechanism while operating the drill string. In this research, an optimum control mechanism was proposed to suppress the torsional vibration as well as mitigate the risk of stick slip phenomenon from occurring. The mechanism was proposed through a series of rigorous research strategies i.e. updated-mathematical equation modelling, experimentation and simulation. As the first step, a mathematical equation model describing system dynamics was derived to set the parameter of investigation. Representing the freedom torsional of the two degrees - conventional vertical drill string, the model was used to predict the frictional Torque On Bit (TOB) through non-linear friction force, denoting the ground-formation behaviour during drilling activity. Using a velocity feedback system, the drill-string oscillation was reduced while gradually increasing its velocity via gain scheduling method - allowing fast response to load disturbance. To avoid the motor torque from exceeding the maximum threshold, a Weight On Bit (WOB) was introduced. This approach remarks the novel contribution of this research. Next, an experiment on the preliminary test rig within a controlled laboratory set up was conducted. The rotary drill rig was assembled to identify the dynamics (i.e. parameters) of an individual part of the drill string. The results obtained were then applied in the drill string operation experiment, to identify the optimum control mechanism that can avoid the torsional vibration. To enable triangulation of results, a simulation was conducted by applying the same parameters obtained from the test rig experiment in the model- which is the optimum control mechanism that was proposed in this research to minimise torsional vibration, as well as reducing the chance of drill-string failure due to stick-slip phenomenon.
|
3 |
[en] SELF-EXCITED PERCUSSIVE-ROTARY DRILLING IN HARD ROCKS / [pt] PERFURAÇÃO PERCUSSIVA-ROTATIVA AUTO-EXCITADA EM ROCHAS DURASLUIZ FERNANDO FURTADO DE MENDONCA PENNA FRANCA 18 February 2004 (has links)
[pt] Uma linha de pesquisa de grande interesse no estudo de
colunas de perfuração de poços de petróleo aponta para a
necessidade de se aumentar a taxa de penetração (ROP) na
perfuração em rochas duras. Procurando suprir tal
necessidade, este trabalho tem como objetivo estudar
mecanismos e propor um novo dispositivo, utilizando as
próprias vibrações geradas na coluna durante a
perfuração.
As várias formas de vibrar da coluna são,
geralmente, indesejadas durante a perfuração. Porém, é
possível utilizar algumas destas formas de vibrar para
melhorar a eficiência do processo de perfuração.
Inicialmente, avalia-se a influência das vibrações
torcional e axial na ROP. Posteriormente, estuda-se a
perfuração na ressonância e alguns aspectos e cuidados no
uso desta nova técnica de perfuração, que vem sendo
desenvolvida por empresas do setor. Por fim, é
desenvolvido
um novo dispositivo de perfuração, chamado de perfuração
com martelo em ressonância ou perfuração percussiva-
rotativa auto-excitada. Este dispositivo tem como
premissa
usar a vibração axial gerada no processo de corte, para
criar uma carga harmônica na broca e excitar uma massa de
aço (martelo). Desenvolve-se um modelo com vibro-impacto
e
atrito seco, representando o martelo e a resistência da
rocha, respectivamente. Faz-se aqui, um estudo numérico e
uma validação experimental do movimento percussivo de um
modelo que representa a broca com este novo dispositivo.
Os
resultados mostram que a melhor forma do dispositivo
operar
é impactando a cabeça da broca, em condição de período-1,
com um impacto por ciclo de forçamento. Adicionalmente,
os
parâmetros do experimento são identificados e os
resultados
numérico-experimental são comparados, mostrando que
são similares. / [en] An area of interest in the study of drillstrings is due to
the device of increasing the rate of penetration (ROP) in
hard rocks. Trying to supply such necessity, this work aims
to study mechanisms and to propose a new device, using
vibrations generated in the drillstring itself. The various
forms of drillstring vibrations are generally regarded as
detrimental in the question. However, it is possible to use
some of these vibrations forms in such a way as to enhance
drilling performance. Initially, the influence of the
torsional and axial vibrations in ROP is analyzed. Next,
the resonance drilling, that is being developed by
companies in this area, and some aspects and cares in the
use of this new drilling technique are studied.
At the end, a new drilling device, called resonance hammer
drilling or self excited percussive rotary drilling, is
developed. This device has as premise to use the axial
vibration due to the cutting process, to generate a
harmonic load at the bit and to excite a steel mass
(hammer). A model with vibro-impact and dry friction is
developed, representing the hammer and the resistance of
the medium, respectively. It is presented a numeric study
and an experimental validation of the percussive motion of
the model, that represent the bit. The results show that
the best way of the hammer to operate is impacting the bit
head, in period-1 condition, ie, with one impact per cycle.
Moreover, the experimental parameters are identified
and since the numerical-experimental results are similar,
the model used is validated.
|
4 |
[pt] DESENVOLVIMENTO DE UM DISPOSITIVO GERADOR DE VIBROIMPACTO / [en] DEVELOPMENT OF A VIBROIMPACT DEVICEROMULO REIS AGUIAR 29 March 2006 (has links)
[pt] A perfuração de rochas duras ainda é um grande desafio
para as empresas de perfuração e exploração de petróleo.
Uma das linhas de pesquisas atuais consiste em combinar
satisfatoriamente duas técnicas de aumento da taxa de
penetração. Esta nova técnica vem sendo chamada de
perfuração percussiva-rotativa auto-excitada. Esta
dissertação se propõe a desenvolver o primeiro protótipo
de um dispositivo que irá operar em ressonância e que será
capaz de gerar forças dinâmicas expressivas. De forma
resumida, este dispositivo será chamado de RIMD (Resonant
Impact Device). Em princípio a idéia é construir um
dispositivo em forma de uma caixa preta, na qual será
montada na estrutura que vibra, tendo esta caixa dois
ajustes, um calibrando a freqüência de ressonância do RIMD
e outro agindo sobre os impactos (folga). É conhecido de
trabalhos anteriores que o tamanho da folga também possui
influência sobre a freqüência natural do sistema. Desta
forma, existe uma interdependência entre ambos os ajustes.
Um dos primeiros passos no projeto e desenvolvimento do
protótipo do RIMD é o dimensionamento do mesmo, de forma
que seja pequeno o suficiente para facilitar sua
construção e instrumentação no laboratório de vibrações da
PUC-Rio, bem como seja representativo do sistema em
tamanho real (a ser implantado na coluna de perfuração).
Os componentes do RIMD envolvem um sistema massa-mola com
baixo amortecimento e algum dispositivo de impacto e de
variação da folga. Após a concepção e construção do
protótipo, os passos seguintes do estudo são a obtenção
das características do RIMD, como a faixa de freqüências o
qual atua e a medição das forças impulsivas geradas. Por
último, o protótipo também servirá para validar um modelo
analítico que permitirá investigações posteriores neste
tema, podendo gerar outras possibilidades de construção do
RIMD. / [en] Hard rock drilling is still a great challenge for oil
companies.
One current line of research involves combining the two
existing drilling
techniques in order to enhance the rate of penetration.
This new technique
is called Resonance Hammer Drilling. This dissertation
proposes the
design and development of the first prototype that will
operate in resonance,
and will be capable of generating considerable dynamic
forces. This device
will be known as the Resonant Impact Device, or RIMD. In
principle
the idea is to build some sort of black box, which will be
mounted on a
vibrating structure with two switches - one calibrating
the RIMD resonance
frequency and the other acting on the impacts - changing
the size of the gap.
It is known from previous work that gap size also has
influence on the system
natural frequency. Therefore there is a relationship
between switches. One
of the first steps of RIMD design and development is
device dimensioning,
necessary in order to construct a scale model at the
Dynamic and Vibration
laboratory at PUC-Rio representative of the real size
system. The real size
system will be mounted on the drillstring. RIMD components
involve a
mass-spring system with low damping and some impact and
gap variation
devices. The analysis of this prototype includes obtaining
key characteristics
such as the range of possible frequencies and the
measurement of the
generated impulsive forces. Finally, the built prototype
will be used to
validate an analytical model that will allow further
investigations on this
subject providing the way to other possible constructions.
|
Page generated in 0.0512 seconds