• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera

Blenau, Wolfgang, Hauser, Frank, Cazzamali, Guiseppe, Williamson, Michael, Grimmelikhuijzen, Cornelis J. P. January 2006 (has links)
G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution. (c) 2006 Elsevier Ltd. All rights reserved.
2

Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activity

Blenau, Wolfgang, Mustard, Julie A., Hamilton, Ingrid S., Ward, Vernon K., Ebert, Paul R., Mercer, Alison R. January 2003 (has links)
Dopamine is found in many invertebrate organisms, including insects, however, the mechanisms through which this amine operates remain unclear. We have expressed two dopamine receptors cloned from honey bee (AmDOP1 and AmDOP2) in insect cells (Spodoptera frugiperda), and compared their pharmacology directly using production of cAMP as a functional assay. In each assay, AmDOP1 receptors required lower concentrations of dopamine and 6,7-ADTN for maximal activation than AmDOP2 receptors. Conversely, butaclamol and cis(Z)-flupentixol were more potent at blocking the cAMP response mediated through AmDOP2 than AmDOP1 receptors. Expression of AmDOP1, but not AmDOP2, receptors significantly increased levels of cAMP even in the absence of ligand. This constitutive activity was blocked by cis(Z)-flupentixol. This work provides the first evidence of a constitutively activated dopamine receptor in invertebrates and suggests that although AmDOP1 and AmDOP2 share much less homology than their vertebrate counterparts, they display a number of functional parallels with the mammalian D1-like dopamine receptors.
3

Am5-HT7 : molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera)

Schlenstedt, Jana, Balfanz, Sabine, Baumann, Arnd, Blenau, Wolfgang January 2006 (has links)
The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT7 receptor family. Expression of the Am5-HT7 receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT7 is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC50 = 1.1-1.8 nM). The Am5-HT7 receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.
4

Development of model fermented fish sausage from New Zealand marine species

Khem, Sarim January 2009 (has links)
Three New Zealand marine species, hoki (Macruronus novaezealandiae), kahawai (Arripis trutta) and trevally (Pseudocaranx dentex) were used to develop model fermented fish sausage. The formulation comprised fish mince, carbohydrate, minced garlic and salt in a mass ratio of 1 (fish): 0.15: 0.05: 0.03, respectively. The carbohydrate source was cooked rice or glucose. (Endogenous lactic acid bacteria (LAB) failed to ferment rice). Folate was also added to the mixture as a factor. The mixtures were extruded into 50 mL plastic syringes, where the needle end of the barrel had been excised by lathe. The lubricated barrel was overfilled to 60 mL, capped with a layer of ParafilmTM and aluminium foil, sealed tightly by rubber band and incubated at 30°C. Over time the piston was progressively advanced to yield samples for microbiological, physical, and chemical analysis. Over 96 hours an increase in the LAB count was observed with a concomitant decrease in pH. After fermentation was complete, the samples contained around 8.77 log cfu LAB g-1 with the pH range from 4.38 to 5.08. The microbiological and pH behaviour of each species varied between preparations. Hardness, adhesiveness, springiness and cohesiveness of the treatments increased with fermentation, except for hoki. The treatments showed different colour characteristics with fermentation. The light reflectance (L* values) of the trevally and kahawai treatments increased, while the a* (redness) and b* (yellowness) values decreased. Hoki exhibited smaller colour changes except for yellowness, which increased markedly. Proteolysis, measured colorimetrically by soluble peptide bonds, was greatest for trevally. Lipid oxidation, measured by the thiobarbituric acid method, was least for hoki, notably the species with the lowest fat content. Biogenic amines, which are a general quality indicator of fermented products, increased during fermentation. The trevally treatment generated the highest concentration of amines, but these values were lower than those reported for fermented fish sausage in Southeast Asia. Notably there were no important difference between folate treatments and those without folate. The results point to commercial opportunities and further research with New Zealand marine species, especially trevally. To improve the product quality and to show geographical exclusivity, further research could be done by using starter culture, and a New Zealand staple carbohydrate source such as kumara and potato, and spices and herbs which are commonly used in New Zealand, such as rosemary, thyme and sage or specific to New Zealand, such as horopito. In addition, sensory studies should also be performed before the products could be tested in the market.
5

Development of model fermented fish sausage from New Zealand marine species

Khem, Sarim January 2009 (has links)
Three New Zealand marine species, hoki (Macruronus novaezealandiae), kahawai (Arripis trutta) and trevally (Pseudocaranx dentex) were used to develop model fermented fish sausage. The formulation comprised fish mince, carbohydrate, minced garlic and salt in a mass ratio of 1 (fish): 0.15: 0.05: 0.03, respectively. The carbohydrate source was cooked rice or glucose. (Endogenous lactic acid bacteria (LAB) failed to ferment rice). Folate was also added to the mixture as a factor. The mixtures were extruded into 50 mL plastic syringes, where the needle end of the barrel had been excised by lathe. The lubricated barrel was overfilled to 60 mL, capped with a layer of ParafilmTM and aluminium foil, sealed tightly by rubber band and incubated at 30°C. Over time the piston was progressively advanced to yield samples for microbiological, physical, and chemical analysis. Over 96 hours an increase in the LAB count was observed with a concomitant decrease in pH. After fermentation was complete, the samples contained around 8.77 log cfu LAB g-1 with the pH range from 4.38 to 5.08. The microbiological and pH behaviour of each species varied between preparations. Hardness, adhesiveness, springiness and cohesiveness of the treatments increased with fermentation, except for hoki. The treatments showed different colour characteristics with fermentation. The light reflectance (L* values) of the trevally and kahawai treatments increased, while the a* (redness) and b* (yellowness) values decreased. Hoki exhibited smaller colour changes except for yellowness, which increased markedly. Proteolysis, measured colorimetrically by soluble peptide bonds, was greatest for trevally. Lipid oxidation, measured by the thiobarbituric acid method, was least for hoki, notably the species with the lowest fat content. Biogenic amines, which are a general quality indicator of fermented products, increased during fermentation. The trevally treatment generated the highest concentration of amines, but these values were lower than those reported for fermented fish sausage in Southeast Asia. Notably there were no important difference between folate treatments and those without folate. The results point to commercial opportunities and further research with New Zealand marine species, especially trevally. To improve the product quality and to show geographical exclusivity, further research could be done by using starter culture, and a New Zealand staple carbohydrate source such as kumara and potato, and spices and herbs which are commonly used in New Zealand, such as rosemary, thyme and sage or specific to New Zealand, such as horopito. In addition, sensory studies should also be performed before the products could be tested in the market.
6

Neuroecology of social organization in the Australasian weaver ant, Oecophylla smaragdina

Kamhi, Jessica Frances 13 February 2016 (has links)
The social brain hypothesis predicts that larger group size and greater social complexity select for increased brain size. In ants, social complexity is associated with large colony size, emergent collective action, and division of labor among workers. The great diversity of social organization in ants offers numerous systems to test social brain theory and examine the neurobiology of social behavior. My studies focused on the Australasian weaver ant, Oecophylla smaragdina, a polymorphic species, as a model of advanced social organization. I critically analyzed how biogenic amines modulate social behavior in ants and examined their role in worker subcaste-related territorial aggression. Major workers that naturally engage in territorial defense showed higher levels of brain octopamine in comparison to more docile, smaller minor workers, whose social role is nursing. Through pharmacological manipulations of octopaminergic action in both subcastes, octopamine was found to be both necessary and sufficient for aggression, suggesting subcaste-related task specialization results from neuromodulation. Additionally, I tested social brain theory by contrasting the neurobiological correlates of social organization in a phylogenetically closely related ant species, Formica subsericea, which is more basic in social structure. Specifically, I compared brain neuroanatomy and neurometabolism in respect to the neuroecology and degree of social complexity of O. smaragdina major and minor workers and F. subsericea monomorphic workers. Increased brain production costs were found in both O. smaragdina subcastes, and the collective action of O. smaragdina majors appeared to compensate for these elevated costs through decreased ATP usage, measured from cytochrome oxidase activity, an endogenous marker of neurometabolism. Macroscopic and cellular neuroanatomical analyses of brain development showed that higher-order sensory processing regions in workers of O. smaragdina, but not F. subsericea, had age-related synaptic reorganization and increased volume. Supporting the social brain hypothesis, ecological and social challenges associated with large colony size were found to contribute to increased brain size. I conclude that division of labor and collective action, among other components of social complexity, may drive the evolution of brain structure and function in compensatory ways by generating anatomically and metabolically plastic mosaic brains that adaptively reflect cognitive demands of worker task specialization and colony-level social organization.
7

Octopamine Levels Relate to Male Mating Tactic Expression in the Wolf Spider Rabidosa punctulata

Hebets, Eileen A., Hansen, Matthew, Jones, Thomas C., Wilgers, Dustin J. 01 February 2015 (has links)
In the wolf spider Rabidosa punctulata, upon encountering a female, males use one of two distinct strategies: (1) they court the female in an attempt to elicit a mating, or (2) they engage in a direct-mount tactic that involves extensive grappling with the female until a mating is achieved. The latter tactic appears more sexually aggressive, and both tactics come with the risk of being cannibalized. We explored the physiological mechanisms underlying this behavioural variation by assessing the relationship between circulating levels of the biogenic amine octopamine (OA), a neuromodulator suggested to play a role in 'fight or flight' responses of arthropods and male mating tactic expression. We predicted, and found support for, a relationship between OA levels and tactic expression, with males adopting the direct-mount tactic expressing higher OA levels than courting males. Male mating tactic and mass also showed a significant interaction, with a negative trend in direct-mounting males and no relationship in courting males. Males had considerably higher levels of OA circulating in their haemolymph than females and female OA level increased with female mass. Our experimental design cannot disentangle cause from effect, but our results are consistent with the hypothesis that OA plays a role in regulating mating tactic expression in R.punctulata.
8

Alternating Extremely Low Frequency Magnetic Field Increases Turnover of Dopamine and Serotonin in Rat Frontal Cortex

Sieroń, Aleksander, Labus, Łukasz, Nowak, Przemysław, Cieślar, Grzegorz, Brus, Halina, Durczok, Artur, Zagził, Tomasz, Kostrzewa, Richard M., Brus, Ryszard 01 September 2004 (has links)
The aim of this study was to evaluate the influence of an extremely low frequency sinusoidal magnetic field (ELF MF) with frequency of 10 Hz and intensity of 1.8-3.8 mT on the levels of the biogenic amines dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindolacetic acid (5-HIAA), and noradrenaline (NA), as well as on DA and 5-HT turnover in corpus striatum and frontal cortex of adult male Wistar rats. We found that ELF MF exposure for 14 days, 1 h daily, did not influence the level of the examined biogenic amines and metabolites, but increased the rate of synthesis (turnover) of DA and 5-HT in rat frontal cortex as compared to control, sham exposed rats. On the basis of the present results and our previous findings, extremely low frequency magnetic field (ELF MF) exposure has been found to alter both turnover and receptor reactivity of monoaminergic systems, as well as some behaviors induced by these systems or their agonists and antagonists.
9

Molekulare und pharmakologische Charakterisierung von Serotonin-Rezeptoren der Honigbiene <i>Apis mellifera</i> / Molecular and pharmacological characterization of serotonin receptors of the honeybee Apis mellifera

Schlenstedt, Jana January 2005 (has links)
Die Honigbiene <i>Apis mellifera</i> gilt seit langem als Modell-Organismus zur Untersuchung von Lern- und Gedächtnisvorgängen sowie zum Studium des Sozialverhaltens und der Arbeitsteilung. Bei der Steuerung und Regulation dieser Verhaltensweisen spielt das Indolalkylamin Serotonin eine wesentliche Rolle. Serotonin entfaltet seine Wirkung durch die Bindung an G-Protein-gekoppelte Rezeptoren (GPCRs). In der vorliegenden Arbeit wird der erste Serotonin-Rezeptor aus der Honigbiene molekular charakterisiert. <br><br> Durch die Anwendung zwei verschiedener Klonierungsstrategien konnten drei cDNA-Sequenzen isoliert werden, die für potentielle Serotonin-Rezeptoren kodieren. Die Sequenzen weisen die größte Ähnlichkeit zu dem 5-HT7- und 5-HT2-Rezeptor von Drosophila melanogaster bzw. dem 5-HT1-Rezeptor von <i>Panulirus interruptus</i> auf. Die isolierten Serotonin-Rezeptoren der Honigbiene wurden dementsprechend Am(<i>Apis mellifera</i>)5-HT1, Am5-HT2 und Am5-HT7 benannt. <br><br> Das Hydropathieprofil des Am5-HT1-, Am5-HT2- und Am5-HT7-Rezeptors deutet auf das Vorhandensein des charakteristischen heptahelikalen Aufbaus G-Protein-gekoppelter Rezeptoren hin. Die abgeleiteten Aminosäuresequenzen zeigen typische Merkmale biogener Amin-Rezeptoren. Aminosäuren, die eine Bedeutung bei der Bildung der Liganden-Bindungstasche, der Rezeptor-Aktivierung und der Kopplung eines G-Proteins an den Rezeptor haben, sind in allen drei Rezeptoren konserviert. Interessanterweise ist jedoch das in den meisten biogenen Amin-Rezeptoren vorhandene DRY-Motiv in dem Am5-HT2- und Am5-HT7-Rezeptor nicht konserviert. Das Vorhandensein einer PDZ-Domäne in dem Am5-HT1- und Am5-HT7-Rezeptor lässt vermuten, dass diese Rezeptoren als Adapterproteine fungieren, die Signalmoleküle zu einem Signaltransduktionskomplex vereinigen. <br><br> RT-PCR-Experimente zeigen die Expression der Rezeptoren in verschiedenen Geweben der Honigbiene. Auffallend ist die hohe Expression im Zentralgehirn. Des Weiteren konnte die Expression der Serotonin-Rezeptoren in den optischen Loben, Antennalloben sowie in der Peripherie, d.h. in der Flugmuskulatur und den Malpighischen Gefäßen nachgewiesen werden. Durch in situ Hybridisierungen wurde die Expression in Gefrierschnitten von Gehirnen adulter Sammlerinnen im Detail untersucht. Transkripte der Rezeptoren sind in den Somata von intrinsischen Pilzkörperzellen, Neuronen der optischen Loben und Neuronen der Antennalloben vorhanden. <br><br> In einem heterologen Expressionssystem wurde der intrazelluläre Signalweg des Am5-HT7-Rezeptors untersucht. Die Aktivierung des stabil exprimierten Rezeptors durch Serotonin führt zur Bildung von cAMP. Der 5-HT7-Rezeptor spezifische Agonist 5-CT zeigt eine mit Serotonin vergleichbare Fähigkeit, die intrazelluläre cAMP-Konzentration zu erhöhen. Am5-HT7 gehört daher funktionell zu der Gruppe der 5-HT7-Rezeptoren. Der EC50-Wert von 1,06~nM (5-HT), ist im Vergleich zu anderen 5-HT7-Rezeptoren äußert niedrig. Des Weiteren wurde gezeigt, dass das basale cAMP-Niveau in den transfizierten Zellen im Vergleich zu nicht transfizierten Zellen deutlich erhöht ist. Das heißt, dass der Rezeptor auch in der Abwesenheit eines Liganden aktiv ist. Diese konstitutive Aktivität ist auch von anderen biogenen Amin-Rezeptoren bekannt. Methiothepin wurde als wirksamer inverser Agonist des Am5-HT7-Rezeptors identifiziert, da es in der Lage ist, der konstitutiven Aktivität entgegenzuwirken.<br><br> Die Ergebnisse der vorliegenden Arbeit deuten darauf hin, dass die Serotonin-Rezeptoren in verschiedenen Regionen des ZNS der Honigbiene an der Informationsverarbeitung beteiligt sind. Es kann eine Beeinflussung von Lern- und Gedächtnisprozessen sowie des olfaktorischen und visuellen Systems durch diese Rezeptoren vermutet werden. Mit der Klonierung und funktionellen Charakterisierung des ersten Serotonin-Rezeptors der Honigbiene ist eine Grundlage für die Untersuchung der molekularen Mechanismen der serotonergen Signaltransduktion geschaffen worden. / The honeybee <i>Apis mellifera</i> is a model organism for studying insect division of labor, learning and memory. An important substance that has been implicated in the control and regulation of these phenomena is the indolalkylamine serotonin (5-hydroxytryptamine, 5-HT) Pharmacological and functional studies indicate, that serotonin activates various receptor subtypes which predominantly belong to the family of G protein-coupled receptors (GPCRs).<br><br> Using a homology based screening approach on a brain-specific cDNA library of the honeybee and a PCR-based strategy we have isolated cDNAs encoding three putative serotonin receptors. The deduced amino acid sequences of these putative honeybee serotonin receptors show the highest homology to a 5-HT7 and a 5-HT2 receptor from <i>Drosophila melanogaster</i> and a 5-HT1 receptor from <i>Panulirus interruptus</i>, respectively. We have studied the distribution of the respective 5-HT receptor mRNAs in several tissues of the honeybee by RT-PCR. The analysis revealed a high amount in the central brain. By using in situ-hybridization we detected receptor encoding mRNA in cryostat sections of honeybee brain. We could prove receptor transcripts in neurons of the optic lobes, intrinsic mushroom body neurons, and deutocerebral neurons. <br><br> In a HEK 293 cell line, stably expressing the 5-HT7 receptor protein, we investigated the intracellular signalling pathway. When activated by serotonin, the heterologous expressed 5-HT7 receptor induces an increase in intracellular cAMP levels ([cAMP]i). The stimulation with other biogenic amines (octopamine, tyramine, and dopamine) did not induce a significant change in [cAMP]i Furthermore, Am5-HT7 causes a significant increase in the non-agonist stimulated cAMP levels relative to those of non-transfected cells. Therefore, the Am5-HT7 receptor displays agonist-independent (constitutive) activity which has also been demonstrated for many other GPCRs. <br><br> A specific affinity-purified anti-Am5-HT7 antibody detected a protein band of the expected size of ~66 kDa in homogenates of honeybee brains and HEK 293 cells expressing the Am5-HT7 receptor.
10

Tyraminergic G Protein-Coupled Receptors Modulate Locomotion and Navigational Behavior In C. Elegans: A Dissertation

Donnelly, Jamie L. 04 August 2011 (has links)
An animal’s ability to navigate through its natural environment is critical to its survival. Navigation can be slow and methodical such as an annual migration, or purely reactive such as an escape response. How sensory input is translated into a fast behavioral output to execute goal oriented locomotion remains elusive. In this dissertation, I aimed to investigate escape response behavior in the nematode C. elegans. It has been shown that the biogenic amine tyramine is essential for the escape response. A tyramine-gated chloride channel, LGC-55, has been revealed to modulate suppression of head oscillations and reversal behavior in response to touch. Here, I discovered key modulators of the tyraminergic signaling pathway through forward and reverse genetic screens using exogenous tyramine drug plates. ser-2, a tyramine activated G protein-coupled receptor mutant, was partially resistant to the paralytic effects of exogenous tyramine on body movements, indicating a role in locomotion behavior. Further analysis revealed that ser-2 is asymmetrically expressed in the VD GABAergic motor neurons, and that SER-2 inhibits neurotransmitter release along the ventral nerve cord. Although overall locomotion was normal in ser-2 mutants, they failed to execute omega turns by fully contracting the ventral musculature. Omega turns allow the animal to reverse and completely change directions away from a predator during the escape response. Furthermore, my studies developed an assay to investigate instantaneous velocity changes during the escape response using machine based vision. We sought to determine how an animal accelerates in response to a mechanical stimulus, and subsequently decelerates to a basal locomotion rate. Mutant analysis using this assay revealed roles for both dopamine and tyramine signaling. During my doctoral work, I have further established the importance for tyramine in the nematode, as I have demonstrated two additional roles for tyramine in modulating escape response behavior in C. elegans.

Page generated in 0.0376 seconds