• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 104
  • 56
  • 37
  • 34
  • 13
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 769
  • 769
  • 143
  • 87
  • 85
  • 79
  • 75
  • 61
  • 57
  • 56
  • 56
  • 56
  • 55
  • 55
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Haemodynamics in dialysis hypotension and the possible role of splanchnic circulation

Yu, Wai-yin, Alex. January 2006 (has links)
Thesis (M. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
82

The Influence of Osmoreceptors and Baroreceptors on Heat Loss Responses during a Whole-body Passive Heat Stress

Lynn, Aaron 08 November 2011 (has links)
Exercise and/or heat-induced dehydration is associated with decreases in plasma volume (hypovolemia) and increases in plasma osmolality (hyperosmolality), which are thought to stimulate peripheral baroreceptors and central osmoreceptors respectively. Independently, plasma hyperosmolality and baroreceptor unloading have been shown to attenuate sweating and cutaneous vasodilation during heat stress, and therefore, negatively impact body temperature regulation. However, to date little is known regarding the combined influence of plasma hyperosmolality and baroreceptor unloading on thermoefferent activity. Therefore, we evaluated the separate and combined effects of baroreceptor unloading (via lower body negative pressure, LBNP) and plasma hyperosmolality (via infusion of 3% NaCl saline) on heat loss responses of sweating and cutaneous vascular conductance (CVC) during progressive whole-body heating. We show that the combined nonthermal influences of plasma hyperosmolality and baroreceptor unloading additively delay the onset threshold for CVC, relative to their independent effects. In contrast, baroreceptor unloading has no influence on the sweating response regardless of osmotic state. These divergent roles of plasma hyperosmolality and the baroreflex on heat loss responses might serve to enhance blood pressure and body core temperature regulation during dehydration and heat stress.
83

The Influence of Osmoreceptors and Baroreceptors on Heat Loss Responses during a Whole-body Passive Heat Stress

Lynn, Aaron 08 November 2011 (has links)
Exercise and/or heat-induced dehydration is associated with decreases in plasma volume (hypovolemia) and increases in plasma osmolality (hyperosmolality), which are thought to stimulate peripheral baroreceptors and central osmoreceptors respectively. Independently, plasma hyperosmolality and baroreceptor unloading have been shown to attenuate sweating and cutaneous vasodilation during heat stress, and therefore, negatively impact body temperature regulation. However, to date little is known regarding the combined influence of plasma hyperosmolality and baroreceptor unloading on thermoefferent activity. Therefore, we evaluated the separate and combined effects of baroreceptor unloading (via lower body negative pressure, LBNP) and plasma hyperosmolality (via infusion of 3% NaCl saline) on heat loss responses of sweating and cutaneous vascular conductance (CVC) during progressive whole-body heating. We show that the combined nonthermal influences of plasma hyperosmolality and baroreceptor unloading additively delay the onset threshold for CVC, relative to their independent effects. In contrast, baroreceptor unloading has no influence on the sweating response regardless of osmotic state. These divergent roles of plasma hyperosmolality and the baroreflex on heat loss responses might serve to enhance blood pressure and body core temperature regulation during dehydration and heat stress.
84

Thermal study of vulnerable atherosclerotic plaque

Kim, Taehong 15 May 2009 (has links)
Atherosclerotic plaques with high probability of rupture show the presence of a hot spot due to the accumulation of inflammatory cells. This study utilizes two and three dimensional (2-D and 3-D) arterial geometries containing an atherosclerotic plaque experiencing different levels of inflammation and uses models of heat transfer analysis to determine the temperature distribution in the plaque region. The 2-D studies consider three different vessel geometries: a stenotic straight artery, a bending artery and an arterial bifurcation which model a human aorta, a coronary artery and a carotid bifurcation, respectively. The 3-D model considers a stenotic straight artery using realistic and simplified geometries. Three different blood flow cases are considered: steady-state, transient state and blood flow reduction. In the 3-D model, thermal stress produced by local inflammation is estimated to determine the effect of inflammation over plaque stability. For fluid flow and heat transfer analysis, Navier-Stokes equations and energy equation are solved; for structural analysis, the governing equations are expressed in terms of equilibrium equation, constitutive equation, and compatibility condition, which are are solved using the multi-physics software COMSOL 3.3 (COMSOL, Inc.). Our results indicate that the best location to measure plaque temperature in the presence of blood flow is recommended between the middle and the far edge of the plaque. The blood flow reduction leads to a non-uniform temperature increase ranged from 0.1 to 0.25 oC in the plaque/lumen interface. In 3-D realistic model, the multiple measuring points must be considered to decrease the potential error in temperature measurement even within 1 or 2 mm at centerline region of plaque. The most highly thermal stressed regions with the value of 1.45 Pa are observed at the corners of lipid core and the plaque/lumen interface. The mathematical model developed provides a tool to analyze the factors affecting heat transfer at the plaque surface. The results may contribute to the understanding of the relationship between plaque temperature and the likelihood of rupture, and also provide a tool to better understand arterial wall temperature measurements obtained with novel catheters.
85

The effects of intravenously infused catecholamines on hepatic blood flow in conscious dogs with experimental obstructive jaundice

Watanabe, Tomohito, Machiki, Yuichi, Kamiya, Satoaki, Uematsu, Toshio, Kanda, Hiroshi, Nimura, Yuji, Kitagawa, Yoshimi 01 1900 (has links)
名古屋大学博士学位論文 学位の種類 : 博士(医学)(論文) 学位授与年月日:平成7年12月20日 北川喜己氏の博士論文として提出された
86

Mechanisms of alcohol-induced neuroteratology: an examination of the roles of fetal cerebral blood flow and hypoxia

Parnell, Scott Edward 17 February 2005 (has links)
Hypoxia (decreased tissue oxygen levels) has long been considered as a possible mechanism of alcohol-induced developmental deficits, yet research has not conclusively disproved this hypothesis, nor has it provided substantial evidence for a mechanism of developmental alcohol insults involving hypoxia. Previous research has shown that moderate acute doses of alcohol does not induce hypoxemia (decreased arterial oxygen levels), yet these same studies have shown that this same alcohol exposure does transiently decrease cerebral blood flow (CBF). This is significant because although developmental alcohol exposure did not result in hypoxemia, the decreases in CBF seen in these previous studies may induce hypoxia within the brain. Unfortunately, these experiments were only performed after acute doses of alcohol, so it is unknown if a more chronic or repeated alcohol exposure paradigm would have similar effects. The present study examined blood flow in the sheep fetus after repeated alcohol exposure in a bingelike paradigm throughout the third trimester. Additionally, this study examined the fetal neurovascular response to a subsequent infusion of alcohol after the repeated alcohol exposure. This latter experiment was designed to examine the hypothesis that alcohol exposure throughout the third trimester affects the normal responsiveness of the neurovasculature to alcohol (compared to previous research demonstrating acute alcohol-induced decreases in CBF). The results from the present experiments indicate that although few regions were significant, the majority of the regions (especially the brain regions) exhibited a trend for increases in blood flows after alcohol exposure. This phenomenon was especially prominent in the group receiving the lower dose of alcohol. Additionally, the data from this study demonstrated that after repeated alcohol exposures the near-term sheep fetus did not respond to a subsequent dose of alcohol in a similar manner seen in previous experiments when the acute alcohol exposure was administered in alcohol naïve animals. After the final alcohol exposure the subjects in this study had either no effect in terms of blood flow or an increase in CBF. This is opposite to previous observations which demonstrated reduced blood flow in numerous brain regions. The present experiments suggest that alcohol does not induce fetal hypoxia, but does negatively affect the normal neurovascular response to alcohol. This latter phenomenon could have negative consequences on future development of the brain.
87

Time course of vascular function changes following an acute maximal exercise bout in obese and normal weight males

Franco, R. Lee. January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Health and Human Performance. Title from title-page of electronic thesis. Includes bibliographical references.
88

Control of dental pulpal pressures and related observations on mandibular circulation and marrow pressures

Christiansen, Richard Louis, January 1970 (has links)
Thesis (Ph. D.)--University of Minnesota, 1970. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 159-170).
89

Computational modeling of oxygen consumption in the heart based on PET measurements

Yan, Fu. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: oxygen consumption; PET; blood flow. Includes bibliographical references (p. 58-61).
90

Quantitative optical imaging of hemodynamics as platforms for studying neuro-vascular physiology and disease

Kazmi, Syed Mohammad Shams 10 September 2015 (has links)
Blood flow and its payload of molecular oxygen are two parameters of most physiological interest. Systemic tissue health is routinely gauged through measurements of vitals and oxygen saturation to estimate the state of these physiological parameters. We design, develop, and deploy optical imaging systems for examining perfusion and oxygenation at the local tissue level and apply these techniques for elucidating the normal and pathological processes associated with neurovascular disease. Specifically, we develop and validate the ability to use Multi-Exposure Speckle Imaging (MESI) to estimate microvascular flow dynamics in rodents over acute and chronic periods. Next, we pose significant optimizations to improve the efficacy of the widefield imaging technique for adoption by bench-side and clinical perfusion studies. We also introduce re-interpretations of the underlying physics to advance the theory that quantifies motion from the imaged speckle patterns. Finally, the technique is deployed for chronic monitoring of cortical flow dynamics before after focal ischemia of the motor cortex as part of a behavioral study in rodents. At the microscale, we develop and validate Two Photon Phosphorescence Lifetime Microscopy (2PLM) to examine dissolved oxygen concentration in microvasculature in three dimensions. We examine the technique’s ability for functional mapping of the rodent cortical microvascular network by quantifying the partial pressure of oxygen (pO₂) before and after occlusion of critical arterioles. Automation of acquisitions and processing for robust oxygen mapping within the micro-vascular network are developed and evaluated. The in vivo results are presented in light of those from studies utilizing more invasive mapping electrodes to provide independent corroboration of the observed neurovascular oxygen distributions. The technique is deployed for examining high resolution functional and structural remodeling after focal cerebral ischemia. / text

Page generated in 0.045 seconds