• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 576
  • 115
  • 75
  • 58
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 10
  • 8
  • 8
  • Tagged with
  • 1126
  • 1126
  • 304
  • 226
  • 209
  • 167
  • 160
  • 156
  • 151
  • 122
  • 111
  • 107
  • 97
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Numerical simulation of planetary boundary-layer evolution and mesoscale flow over irregular terrain under daytime heating conditions

Ueyoshi, Kyozo 01 March 1985 (has links)
The influence of irregular terrain on the evolution of the daytime planetary boundary layer (PBL) and meso-β scale dry circulations is studied using two three-dimensional hydrostatic σ-coordinate models with different approaches for the PBL parameterizations; the 4-layer model uses the mixed-layer (bulk-layer) approach, while the 7-layer model adopts the eddy-diffusivity (multi-layer) approach. Numerical experiments are carried out under the conditions of a dry, sunny summer day with moderate prevailing westerly winds blowing over gently sloping idealized hills in a domain of 150 km on a side. The results from the two models are compared and their performances are evaluated. The behaviors of the mean PBL depth and inversion strength are analytically described using a simple one-point mixed-layer model. Counterclockwise rotation of the mean PBL winds with time observed in both model results can be explained only when the non-zero momentum flux at the PBL top is taken into account. However, stresses associated with entrainment at the PBL top are not sufficient to pull the cold air out of the valleys so as to result in breakup of the early morning stable layer, as is suggested in a previous study. The regions of weak winds that persist in the morning PBL are attributed largely to the baroclinic effect of horizontal variations of potential temperature θ in the PBL, while the effect of surface drag is quite small in these areas. Significant differences in the flow patterns near the surface in two results suggest the importance of the local pressure gradient force associated with terrain irregularities. The effect of horizontal θ advection is also significant in helping reduce the PBL θ anomalies and promote breakup of the stable layer. The well-mixed assumption generally applies quite well to the development of the θ profiles, while for momentum it seems valid only during the peak of convective mixing and the eddy-diffusivity approach is probably preferable for a better description of the low-level flows. The fields of the PBL top height obtained using different procedures in the two models are found to correspond fairly well to each other. Mass-flux convergence associated with terrain irregularities and resulting changes in the wind fields are shown to play a key role in the midday PBL height patterns. The development of the PBL structure as revealed by the θ cross sections obtained from either model corresponds favorably to that indicated by idealized cross sections previously constructed from observed data. The formation of a region of mass-flux convergence and accompanying updrafts near the surface on the leeward side of a mountain, processes which are likely to be important in terrain-induced cloud initiations, seem to be simulated. / Graduation date: 1985
82

Characterization of marine boundary layer aerosol from north Atlantic and European sources : physical and chemical properties and climate forcing parameters /

Dusek, Ulrike. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 184-197).
83

Upgrading and qualification of a turbulent heat transfer test facility

Odetola, Olumide Folorunso. January 2002 (has links)
Thesis (M.S.)--Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
84

The California coastal jet : synoptic controls and topographically induced mesoscale structure /

Cross, Patrick S. January 2003 (has links) (PDF)
Thesis (Ph. D. in Meteorology)--Naval Postgraduate School, March 2003. / Dissertation supervisor: Wendell Nuss. Includes bibliographical references (p. 167-169). Also available online.
85

The effect of bed permeability on oscillatory boundary layer flow

Sparrow, Kathryn January 2013 (has links)
Oscillatory boundary layer flow is found under waves in the near shore region. This region is responsible for large volumes of sediment transport and whilst a large number of studies have investigated the broader problem only a handful of studies have investigated the boundary layer flow in detail. Most of these studies have also only considered boundary layer flow over rough impermeable beds and therefore do not take into account the potential effect of the flow interaction with a permeable bed. Similar studies in other felds of environmental fluid mechanics have concluded that the presence of a permeable bed can lead to significant diff erence in the boundary layer hydrodynamics when compared to the equivalent flow over an impermeable bed. This thesis presents a series of laboratory experiments that have been conducted over an impermeable gravel bed and a permeable gravel bed to identify the differences in the boundary layer hydrodynamics with a particular reference to the differences in the horizontal velocity profile, the shear stress, turbulence and the bed friction factor. The results indicate that a difference exists in the near-bed flow between the two bed cases. The results also demonstrate that the magnitude of the differences vary with flow Reynolds number, so the more energetic the wave the larger the impact of the permeable bed. The bed shear stress and resulting friction factor was found to be 40% greater for the flows over the permeable bed for the most energetic test case whilst the friction factor for the two bed cases for the least energetic test case are similar. The results also indicate that the permeable bed introduces an unexpected asymmetry in the flow cycle. This is attributed to the high vertical velocities that have been observed. A second series of experiments have been conducted to shed light on the interaction between the flow above the bed and within the bed to help explain the results from the initial gravel-bed experiments. The second series of experiments have been conducted over a regular permeable bed that allows for velocity measurements within the pores. The results indicate that the horizontal velocity, shear stress and turbulence all display signs of being effected by the exchange of flow, or ventilation, that naturally occurs.
86

INTERNAL LAMINAR HEAT TRANSFER TO A GAS WITH TEMPERATURE DEPENDENT PROPERTIES

Swearingen, Thomas Burke, 1931- January 1969 (has links)
No description available.
87

Physics of three-dimensional normal shock wave/turbulent boundary layer interactions in rectangular channels

Sami, Kashmir January 2012 (has links)
No description available.
88

An investigation of the role of flux divergence in the turbulent kinetic energy balance of the atmospheric surface layer

Vogel, Christoph Alexander 08 1900 (has links)
No description available.
89

Inclusion de la condensation dans un modèle de couche limite

Tourigny, Pierre. January 1986 (has links)
No description available.
90

An analysis of turbulent base flow using an integral boundary layer method.

Bland, Douglas John. January 1969 (has links)
No description available.

Page generated in 0.0442 seconds