• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 514
  • 168
  • 123
  • 77
  • 36
  • 23
  • 15
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 1979
  • 479
  • 339
  • 338
  • 209
  • 191
  • 186
  • 163
  • 154
  • 140
  • 128
  • 123
  • 116
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Enhancing the Performance of Crumb Rubber Modified Asphalt through Controlling the Internal Network Structure Developed

Ragab, Mohyeldin January 2016 (has links)
Sustainability presents a pathway for future generations to have a better life. Cradle to cradle methodology is the essence of sustainability. In cradle to cradle approach, we aim to reuti-lize a given waste instead of disposing or landfilling it. Each year, millions of waste tires are dis-posed of in landfills. This poses a major challenge environmentally and economically. Environ-mentally, those tires become prone to fire hazards as well as being a place for rodents and mos-quitos to reside at. Economically, on the other hand, each tire has an average of about 50% valu-able polymers as well as oily components. One of the methods to utilize the valuable raw materi-als in waste tires is to recycle it in the form of ground tire rubber also known as crumb rubber modifier (CRM). Although CRM has been widely used as an asphalt modifier, however, due to the complexity of asphalt as well as the waste nature of CRM, the full understanding of the CRM modification mechanism with asphalt has not been fully understood. Understanding of the modi-fication mechanisms involved in the CRM interaction with asphalt would enable us to produce a crumb rubber modified asphalt (CRMA) with enhanced properties. In the current research work, an attempt is made to better understand the mechanism of interaction between CRM and asphalt and the nature of components from asphalt and CRM that take part in the interaction between them. In addition, we investigate the effectiveness of CRM as a modifier for asphalt on the mac-ro and microscale aspects. Another part of the current research work deals with a second waste material; used motor oil. Used motor oil (UMO) presents yet another challenge to environment. With the ever increas-ing motor vehicles produced with advanced technologies and increased advanced motor oil de-mand. This presents a burden on the environment, with the continuous production of UMO. In the current research work, we investigated the feasibility of utilizing UMO as a modifier for asphalt and CRMA. We also investigated the effect of UMO on the micro and macroscale aspects of asphalt.
152

Characterization of Activities of Crumb Rubber in Interaction with Asphalt and its Effect on Final Properties

Ghavibazoo, Amir January 2015 (has links)
Recycling of millions of scrap tires produced everyday is crucial challenge encountered by waste management systems. Recycling tire rubbers in form of ground tire rubber, known as crumb rubber modifier (CRM), in asphalt industry was introduced in early 1960's and is proved as an effective recycling method. Interaction between CRM and asphalt is physical in nature which happens mainly due to exchange of components between CRM and asphalt and enhances the time temperature dependant properties of asphalt. In this work, the interaction between CRM and asphalt was evaluated through monitoring the evolutions of CRM in asphalt in macro and micro-level. The mechanism and extent of CRM dissolution were monitored under several interaction conditions. The composition of materials released from CRM was investigated using thermo-gravimetric analysis (TGA). The molecular status of the released components were studied using gel permeation chromatography (GPC) analysis. The composition analysis indicated that the CRM start releasing its polymeric components into the asphalt matrix at dissolutions higher than 20%. The released polymeric component of CRM alters the microstructure of the asphalt and creates an internal network at certain interaction temperatures according to viscoelastic analysis. At these temperatures, the released polymeric components are at their highest molecular weight based on GPC results. The effect of released components of CRM on the time temperature dependent properties of asphalt and its glass transition kinetic was monitored using dynamic shear rheometer (DSR) and differential scanning calorimetry (DSC), respectively. The DSC results showed that the intensity of glass transition of the asphalt binder which is mainly defined by the aromatic components in asphalt reduced by absorption of these components by CRM. The evolution of CRM was investigated during short-term aging of the modified asphalt binder. In addition, the effect of presence of CRM and release of its component on oxidization of asphalt binder was evaluated using Fourier transform infrared spectroscopy (FTIR). The results revealed that CRM continue absorbing the aromatic components of asphalt during aging which stiffen the asphalt binder. Also, it was observed that release of oily components of the CRM, which contain antioxidant, reduces oxidization rate of asphalt significantly. / National Science Foundatio (Grant No. 0846861)
153

Developement and analysis of a cement coating technique : an approach toward distress minimization and failure delay in flexible pavements /

Bayomy, Fouad Mohamed Sayed January 1982 (has links)
No description available.
154

Hydration processes in pastes of Roman and American Natural Cements.

Vyskocilova, R., Schwarz, W., Muncha, D., Hughes, David C., Kozlowski, R., Weber, J. January 2007 (has links)
No / Hydration of five Roman and American natural cements was analyzed using X-ray diffraction, mercury intrusion porosimetry, and scanning electron microscopy of cement pastes. Two cements were prepared in the laboratory by burning marls from geological sources in Poland (Folwark) and Austria (Lilienfeld). The selection of raw materials and burning conditions were optimized so that the hydraulic nature and appearance of the final burnt materials matched as closely as possible historic Roman cements widely used in the 19th and the beginning of the 20th centuries in Europe to decorate buildings. Three other cements are produced commercially: quick setting Prompt cement from Vicat, France, and Rosendale cements from Edison Coatings Inc., USA. The hydration of the cements studied was shown to comprise two distinct stages. The immediate setting and early strength is due to the formation of calcium aluminum oxide carbonate (or sulfate) hydroxide hydrates. The development of long-term strength is brought about by the formation of calcium silicate hydrates. Similarities and differences between the individual cements are discussed.
155

Vlastnosti portlandských cementů s ohledem na ekonomickou a ekologickou efektivitu výroby / Properties of Portland cements with regard to the economic and ecological efficiency of production

Walter, Martin January 2013 (has links)
Diploma thesis discusses about design composition and firing process modification of belite clinker. It also deals with the summary of knowledge about chemistry and production technology of portland cements with respect to its ecology and economy.
156

Fundamental physical properties of graphene reinforced concrete

Dimov, Dimitar January 2018 (has links)
The global warming has increased with unprecedented levels during the last couple of decades and the trend is uprising. The construction industry is responsible for nearly 10% of all carbon emissions, mainly due to the increasing global population and the large demand for housing and civil infrastructure. Concrete, which is the most used construction material worldwide, is found in every type of building as it provides long term structural stability, support and its main constituent cement, is very cheap. Consequently, due to the raising concerns of high average temperatures, the research community started investigating new, innovative methods for substituting cement with 'greener' materials whilst at the same time improving the intrinsic properties of concrete. However, the manufacturing complications and logistics of these materials make them unfavourable for industrial applications. A novel and truly revolutionary method of enhancing the performance of concrete, thus allowing for decreased consumption of raw materials, lies in nanoengineering the cement crystals responsible for the development of all mechanical properties of concrete. Graphene, a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice, is the most promising nanomaterial for composites' reinforcement to this date, due to it's exceptional strength, ability to retain original shape after strain, water impermeability properties and non-hazardous large scale manufacturing techniques. I chose to investigate the addition of liquid-phase exfoliated graphene suspensions for concrete reinforcement, aiming to improve the fundamental mechanical properties of the construction material and therefore allowing the industry to design buildings using less volume of base materials. First, the method of liquid exfoliation of graphene was developed and the resulting water suspensions were fully characterised by Raman spectroscopy. Then, concrete samples were prepared according to British standards for construction and tested for various properties such as compressive and flexural strength, cyclic loading, water impermeability and heat transport. A separate, in-depth, study was carried out to understand the formation and propagation of micro-structural cracks between the concrete's internal matrix planes, and graphene's impact on total fracture capacity and resistance of concrete. Lastly, multiple experiments were performed to investigate the microcrystallinity of cement hydration products using X-Ray diffraction. In general, all experimental results show a consistent improvement in concrete's performance when enhanced with graphene on the nanoscale level. The nanomaterial improves the mechanical interlocking of cement crystal, thus strengthening the internal bonds of the composite matrix. This cheap and highly scalable method for producing and mixing graphene with concrete turns it into the first truly applicable method for industrial applications, with a real potential to have positive impact on the global warming by decreasing the production of concrete.
157

The relation of consistency to setting time and strength of silicate cements

The, Se Hon. January 1960 (has links)
Thesis (M.S.)--University of Michigan, Ann Arbor, 1960. / Typescript. Includes bibliographical references (leaves 51-54). Also issued in print.
158

Maximizing carbon uptake and performance gain in slag-containing concretes through early carbonation

Monkman, Sean, January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Civil Engineering and Applied Mechanics. Title from title page of PDF (viewed 2009/06/10). Includes bibliographical references.
159

The relation of consistency to setting time and strength of silicate cements

The, Se Hon. January 1960 (has links)
Thesis (M.S.)--University of Michigan, Ann Arbor, 1960. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 51-54).
160

A case study of Hong Kong--Mainland China joint venture /

Wong, Kun-ho, Eric. January 1998 (has links)
Thesis (M.B.A.)--University of Hong Kong, 1998. / Includes bibliographical references (leaf [76]-78).

Page generated in 0.0455 seconds