Spelling suggestions: "subject:"[een] CEMENT BASED COMPOSITES"" "subject:"[enn] CEMENT BASED COMPOSITES""
1 |
The behaviour of fibre reinforced concrete (SHCC) under biaxial compression and tensionSwanepoel, Willie 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Strain hardening cement‐based composites (SHCC) are fibre‐reinforced composites designed to form
multiple fine cracks under tensile and flexural load. The cracks are controlled to small widths, whereby
significant toughness, or energy dissipation, is realised on the one hand, and high resistance to gas and
liquid ingress is maintained on the other hand. These two physical phenomena define application fields
of SHCC, i.e. for instance elements of buildings and infrastructure for enhanced earthquake resistance,
and protection of steel bars under service loads which lead to crack formation. Also exploiting the
potential protection offered by SHCC to existing structures, thin overlays have been applied to existing
dam faces, reinforced concrete retaining walls, water channels and RC road pavements. The layers vary
between 20 and 40 mm in thickness. Considering the fibre length, usually 8 or 12 mm, as well as the
application method, such thin layers may have dominantly two dimensional fibre orientation, with little
or no component in the layer thickness direction. While several research groups have performed
uniaxial tensile tests and flexural tests on SHCC specimens, little or no information is available on SHCC
response to biaxial loading, as is to be expected in road pavement repair layers, or other repair layers.
This paper reports the results of biaxial testing of 20 mm thick SHCC specimens produced in such a way
to have dominantly two‐dimensional fibre orientation, and another group of specimens produced by
cutting from larger specimens, whereby three‐dimensional fibre orientation was preserved in the
resulting 20 mm thick specimens. Biaxial tests were performed in three quadrants, i.e. compressioncompression,
compression‐tension, and tension‐tension. A clear fibre orientation‐related difference in
the failure patterns involves out‐of‐plane splitting under biaxial compression of specimens with twodimensional
fibre orientation, at significantly lower load, as opposed to in‐plane tensile splitting of
specimens containing three‐dimensional fibre orientation. / AFRIKAANSE OPSOMMING: Vervormingsverhardende sement‐gebaseerde saamgestelde materiale (SHCC) is veselversterke
saamgestelde materiale wat ontwerp is om verskeie fyn krakies te vorm onder trekspanning en buig
spanning. Die kraakbreedtes word beheer, waardeur betekenisvolle taaiheid verkry, of energie verlies
beheer word aan die een kant, en die hoë weerstand teen die gas en die vloeistof penetrasie aan die
ander kant gehandhaaf word. Hierdie twee fisiese verskynsels definieer die toepassingsvelde van SHCC,
d.w.s vir byvoorbeeld elemente van geboue en infrastruktuur vir verbeterde aardbewing weerstand, en
die beskerming van staal stawe onder die dienslaste wat lei vorming te kraak. By eksploitasie van die
potensiële beskerming aangebied deur SHCC aan bestaande strukture, is dun oorlae op bestaande dam
walle, versterkte beton keermure, water kanale en staal‐versterkte beton paaie gebruik. Die SHCC lae
wissel tussen 20 en 40 mm in dikte. Met inagneming van die vesel lengte, gewoonlik 8 of 12 mm, sowel
as die toepassingsmetode, kan so 'n dun lag ‘n oorheersend tweedimensionele vesel oriëntasie hê, met
min of geen komponent in die rigting van die laag dikte nie. Terwyl verskeie navorsingsgroepe eenassige
trektoetse en buigtoetse op SHCC monsters gedoen het; is daar min of geen inligting beskikbaar op SHCC
se reaksie op biaksiale belasting, soos verwag kan word in die pad herstel lae, of ander herstel lae.
Hierdie verslag rapporteer die resultate van die biaksiale toetsing van 20 mm dik SHCC monsters wat op
so 'n manier gemaak word om dominante twee‐dimensionele vesel oriëntasie te hê, en 'n ander groep
monsters wat deur die sny van groter monsters, waarvolgens die drie‐dimensionele vesel oriëntasie
verseker is. Biaksiale toetse is uitgevoer in drie kwadrante, d.w.s druk‐druk, druk‐trek en trek‐trek. 'n
Duidelike verskil in die falingspatrone, aan die hand van vesel oriëntasie, behels uit‐vlak splyting onder
biaksiale toetsing van monsters met twee‐dimensionele vesel oriëntasie, op 'n aansienlik laer lading, in
teenstelling met die in‐vlak trek splyting van monsters wat ‘n drie‐dimensionele vesel oriëntasie het.
|
2 |
Uticaj termički i mehanohemijski aktivirane kaolinske gline na mehanička svojstva i strukturu cementnih kompozita / Effect of thermal and mechanochemical activated kaolin clay onthe mechanical properties and structure of the cement basedcompositesIlić Biljana 22 September 2016 (has links)
<p>Predmet ovog istraživanja je razvoj nove generacije<br />mineralnih dodataka, dobijenih termičkom i<br />mehanohemijskom aktivacijom kaolinske gline i ispitivanje<br />svojstava kompozita, u kojima je deo portland cementa<br />zamenjen dobijenim pucolanskim materijalima,<br />metakaolinom i amorfnim kaolinom, za različite režime<br />nege. Rezultati su pokazali da su termička i mehanohemijska<br />aktivacija kaolinske gline jednako pogodne metode za<br />dobijanje pucolanskih materijala. Pozitivni efekti na<br />čvrstoće pri pritisku postižu se primenom do 30 %<br />metakaolina u kompozitima pri normalnom režimu nege, a uz<br />dodatno mlevenje, sadržaj metakaolina se može povećati do<br />40 %, uz dodatak CH. Amorfni kaolin se može primeniti u<br />kompozitima, sa stepenom zamene portland cementa do 10 %,<br />pri normalnom i autoklaviranom režimu nege.</p> / <p>The subject of this research is development of a new generation<br />of mineral admixtures, obtained by thermal and<br />mechanochemical activation of kaolin clay, and testing of the<br />properties of the cement based composites, where a part of the<br />portland cement is replaced by pozzolanic materials, metakaolin<br />and amorphous kaolin, for different curing conditions. The<br />results showed that thermal and mechanochemical activation of<br />kaolin clay were equally suitable for obtaining pozzolanic<br />materials. Positive effects on the compressive strength could be<br />achieved by using up to 30 % of MK, and with additional grinding<br />after thermal activation, content of MK could be increased up to<br />40 %, with the addition of CH, under the normal curing<br />conditions. Amorphous kaolin could be used in composites with<br />a cement replacement level of 10 %, under the normal and<br />autoclave curing conditions.</p>
|
3 |
[pt] COMPORTAMENTO MECÂNICO DE COMPÓSITO À BASE DE CIMENTO REFORÇADO COM FIBRAS NATURAIS PARA APLICAÇÕES ESTRUTURAIS / [en] MECHANICAL BEHAVIOR OF NATURAL FIBER CEMENT BASED COMPOSITES FOR STRUCTURAL APPLICATIONSFELIPE PINHEIRO TEIXEIRA 07 December 2020 (has links)
[pt] Este trabalho discute experimentalmente a utilização de fibras naturais em compósitos cimentícios para o reforço de elementos estruturais de concreto. Para tal, foram analisadas a morfologia e a durabilidade de fibras de curauá, cânhamo e sisal, bem como suas propriedades mecânicas. Dentre as fibras estudadas, o curauá apresentou o melhor desempenho, o que justificou sua implementação como reforço nos compósitos cimentícios. Para o projeto do compósito, foi decidido que o volume de fibras seria aplicado dividido em três camadas paralelas, em um arranjo alinhado longitudinalmente, como um tecido unidirecional. Os compósitos cimentícios reforçados com tecido de curauá foram mecanicamente caracterizados por testes de tração, flexão, compressão e cisalhamento. Após a investigação no nível material, o compósito desenvolvido foi aplicado sobre a superfície das vigas estruturais como um laminado afim de aumentar a capacidade portante sob duas condições de carregamento: flexão e cisalhamento. Os resultados experimentais dos ensaios estruturais foram confrontados com modelos analíticos para comparação. Os compósitos apresentaram um comportamento mecânico de alta performance, tendo alcançado o comportamento strain-hardening em todos os casos. Como reforço estrutural, o compósito proporcionou às vigas aumentos de resistência e ductilidade. Foi observado também um atraso no escoamento dos vergalhões de aço. / [en] This work experimentally discusses the use of natural fibers in cement-based composites for the strengthening of concrete structural elements. For such, the morphology and durability of curauá, hemp, and sisal fibers were analyzed, as well as their mechanical properties. Among the studied fibers, the curauá presented the best performance, which justified its implementation as reinforcement for cement-based composites. For the composite design, it was decided that the volume of fibers would be applied splitted into three parallel layers, in a longitudinally aligned arrangement, like a unidirectional fabric. A layer of this fabric was performed under a tensile test aiming to better understand its mechanical behavior. The cement-based composites reinforced with curauá fabric were mechanically characterized by tensile, bending, combined load compression, and shear tests. After the investigation at the material level, the developed composite was applied over the surface of structural beams as laminates, seeking to provide its strengthening under two distinct loading conditions: bending and shear. The experimental results of the structural tests were confronted with analytical models for comparison. The composites showed a high mechanical performance, achieving the strain-hardening behavior in all cases. When used as a structural reinforcement, the composite provided to the beams increases of strength and ductility. It was also observed a yielding delay in the steel reabars.
|
4 |
Entwurf und Herstellung von dünnwandigen Faltwerken aus zementbasierten Verbundwerkstoffenvan der Woerd, Jan Dirk, Hegger, Josef, Chudoba, Rostislav 21 July 2022 (has links)
Der in den Ingenieurwissenschaften zunehmend populäre Einsatz der Origami-Technik eröffnet neue Möglichkeiten zur Herstellung von effizienten Tragkonstruktionen [1]–[5]. In Verbindung mit leistungsfähigen, zementbasierten Verbundwerkstoffen bietet die Origami-Technik einen innovativen Ansatz für Entwurf und Realisierung von leichten tragenden Strukturen nach dem Prinzip form follows force – dem Grundgedanken des SPP 1542. [Aus: Motivation und Zielsetzung] / The increasingly popular use of origami technology in the engineering sciences opens up new possibilities for the manufacture of efficient load-bearing structures [1]–[5]. In combination with high-performance, cement-based composite materials, origami technology of ers an innovative approach to the design and realisation of lightweight load-bearing structures based on the principle form follows force –the basic idea of SPP 1542. [Off: Motivation and objectives]
|
5 |
Tensile behavior of high-performance cement-based composites with hybrid reinforcement subjected to quasi-static and impact loadingGong, Ting 17 February 2021 (has links)
Hochduktile Betone (Engl.: Strain-Hardening Cement-based Composites – SHCC) und Textilbetone (engl.: Textile Reinforced Concrete – TRC) sind zwei neuartige Faserbetone, die ein duktiles und dehnungsverfestigendes Zugverhalten aufweisen. SHCC bestehen aus feinkörnigen Zementmatrizen und kurzen Hochleistungspolymerfasern, während TRC eine Kombination aus feinkörnigen Zementmatrizen und kontinuierlichen zwei- oder dreidimensionalen Textilschichten darstellt. Letztere bestehen aus Multifilamentgarnen aus Kohlenstoff, alkalibeständigem Glas oder Polymerfasern. Die hohe elastische Verformbarkeit beider Verbundwerkstoffe bis zum Erreichen der Zugfestigkeit entsteht aus der sukzessiven Bildung multipler feiner Risse. Neben der hervorragenden Risskontrolle und Duktilität weisen diese Verbundwerkstoffe ein hohes Energieabsorptionsvermögen auf, was in Bezug auf kurzzeitdynamische Belastungen eine durchaus erstrebenswerte Eigenschaft darstellt.
Obwohl SHCC eine höhere Dehnungskapazität als herkömmliche TRC zeigen, weisen die Textilbetone eine erheblich höhere Zugfestigkeit auf. Darüber hinaus besitzen die textilbewehrten Betone deutlich niedrigere Einflüsse von Anwendungstechnologie und Maßstab auf das Zugverhalten, d. h. eine bessere Robustheit. Daher stellt die Kombination dieser beiden Bewehrungskonzepte einen vielversprechenden Ansatz dar. Während die Kurzfasern für eine bessere Risskontrolle und Erstrissfestigkeit sorgen, sichern die Textilgelege eine hohe Zugfestigkeit sowie Steifigkeit im gerissenen Zustand und eine gleichmäßige Verteilung der Kräfte in der Verstärkungsschicht bzw. im Bauteil. Dieser synergetische Effekt kann jedoch nur durch eine zielgerichtete Materialentwicklung erreicht werden, die eine grundlegende Materialcharakterisierung unter verschiedenen Belastungsszenarien erfordert.
Im Rahmen des DFG-finanzierten Graduiertenkollegs GRK 2250 „Impaktsicherheit von Baukonstruktionen durch mineralisch gebundene Komposite“ werden duktile und Impakt resistente Komposite entwickelt, charakterisiert und erprobt, die als dünne Verstärkungsschichten auf bestehende Konstruktionen bzw. Bauelemente aufgetragen werden und dadurch deren Widerstandsfähigkeit und Resilienz gegen extreme kurzzeitdynamische Beanspruchungen signifikant erhöhen. Die in der vorliegenden Arbeit vorgestellten Ergebnisse wurden im Rahmen des A3-Projektes innerhalb des GRK 2250/1 erzielt. Ziel dieser Arbeit war es, die grundlegenden mechanischen Eigenschaften und die Dehnratenabhängigkeit von mineralisch gebundenen Kompositen mit hybrider Faserbewehrung zu erfassen und zu beschreiben. Das Forschungskonzept besteht aus systematischen und parametrischen Untersuchungen der einzelnen Komponenten (Faser, Textil, zementgebundene Matrix), ihres Verbundes und der entsprechenden Verbundwerkstoffe. Hierfür wurden zweckbestimmte Prüfkonfigurationen und dreidimensionale Messverfahren angewandt, die in anderen Projekten des GRK 2250/1 entwickelt wurden. Außer uniaxialen, quasistatischen und dynamischen Zugversuchen wurden quasistatische und dynamische Einzelgarnauszugsversuche durchgeführt. Die wichtigsten untersuchten Materialparameter waren die Art der Kurzfaserbewehrung und der Textilien (Material, geometrische und Oberflächeneigenschaften, Art der Tränkung usw.).
Auf Basis der mechanischen Experimente wurde ein analytisches Modell eingesetzt und angepasst, dass das Zugverhalten solcher Komposite in Abhängigkeit von verschiedenen Materialparametern abbilden soll.
Zusätzlich zu der detaillierten Beschreibung der Materialeigenschaften, der maßgebenden Mechanismen und synergetischen Effekte bilden die erzielten Ergebnisse eine umfangreiche experimentelle Basis für eine empirische und Modell gestützte Weiterentwicklung und Optimierung dieser Verbundwerkstoffe mit Hinblick auf wirtschaftliche und ökonomische Aspekte. / Strain-hardening cement-based composites (SHCC) and textile-reinforced concrete (TRC) are two novel types of fiber-reinforced cementitious composites that exhibit ductile, strain-hardening tensile behavior. SHCC comprises fine-grained cementitious matrices and short, high-performance polymer fiber, while TRC is a combination of a fine-grained, cementitious matrix and continuous two- or three- dimensional textile layers of multi-filament yarns, usually made of carbon or alkali-resistant glass. Both composites yield high inelastic deformations in a strain-hardening phase due to the successive formation of multiple fine cracks. Such cracking behavior stands for high energy absorption of the composites when exposed to extreme loading, without abrupt loss of load-bearing capacity.
In comparative terms, SHCC shows superior strain capacity, while TRC yields considerably higher tensile strength. The addition of short fibers strengthens the matrix by efficiently restraining the micro-cracks’ growth and reducing spallation, while the textile reinforcement ensures a secure confinement of the reinforced concrete element (substrate to be strengthened), as well as a favorable stress distribution. The combination of SHCC and textile reinforcement is expected to deliver high tensile strength and stiffness in the strain-hardening stage along with pronounced multiple cracking. In order to achieve a favorable synergetic effect, a purposeful material design is required based on a clear understanding of the mechanical interactions in the composites.
In the framework of the DFG Research Training Group GRK 2250, which aims at enhancing structural impact safety through thin strengthening layers made of high-performance mineral-based composites, this work focuses on developing hybrid fiber-reinforced cementitious materials to be applied on the impact rear side. The development concept builds upon a systematic investigation of various aspects of the mechanical behaviors of SHCC and textile at quasi-static and impact strain rates, including the bond properties of fiber to matrix and textile to matrix. Accordingly, uniaxial quasi-static tension tests were first performed on SHCC, bare textile, and hybrid-reinforced composite specimens. The parameters under investigation were types of short fiber and textile reinforcements, reinforcing the ratio for textile as well as bond properties between textile and the surrounding SHCC. Furthermore, impact tension tests were performed to study the strain rate effect on the synergetic composite response. Finally, single-yarn pull-out tests were carried out under both quasi-static and impact loading rates to supplement the comparative assessment of the hybrid fiber-reinforced composites. These tests yielded shear strength-related parameters for quantifying the bond properties of different materials, which were then used as input of the analytical model developed to describe the mechanics of crack propagation and tension stiffening effect of textile-reinforced composites without short fibers. This model is the first step towards a comprehensive analytical description of the tensile behavior of hybrid fiber-reinforced composites based on the experimental data and input parameters attained through the work at hand.
|
6 |
Crack-bridging behaviour of polymer fibres in Strain-Hardening Cement-based Composites (SHCC) subject to alternating tension-compression cyclic loadingRanjbarian, Majid 09 December 2021 (has links)
Concrete is undoubtedly the most important construction material, with widespread applications worldwide. Despite its many advantages, however, concrete exhibits low tensile strength and tends toward brittle failure. The most promising approach for improvement of its tensile properties is the addition of fibres. By addition of only one or two percent of high-performance polymer fibres to a cementitious matrix, strain-hardening can be developed under uniaxial tensile loading. Such materials yield multiple cracking and permit large inelastic deformation in a hardening regime, for which they are usually called Strain-Hardening Cement-based Composites (SHCC). However, the behaviour of SHCC depends on loading conditions, where the most critical case is cyclic loading in tension-compression regimes, in which the ductile properties of the composite can be lost after only several hundred cycles due to degradation of the fibre bridging capacity.
The thesis at hand presents the results of experimental investigations into the crack-bridging behaviour of polymer fibres in SHCC subject to alternating tension-compression loading regimes. The investigations covered monotonic loading as well. The experimental programme included fibre tension tests; single-sided, single fibre pull-out tests; double-sided, single and multiple fibre pull-out tests; and microscopic analysis of the specimens after testing. The bridging and pull-out behaviour of single PVA fibres embedded in cement-based matrices were comprehensively characterised and described by a new model. The Locking Front Model explains different interaction phenomena between fibre and matrix after full de-bonding. Furthermore, the interaction and damage mechanisms under cyclic loading were understood. The damage types depend on various parameters such as fibre inclination angle to the crack plane. Above all, however, the deterioration of bridging capacity results from the damage of the fibres between the crack faces in alternating tension-compression regime. The severity of damage is mostly determined by the number of cycles, compressive stress level, and crack width.
The results of the experimental investigations at the micro- and meso-levels were analysed further to establish a multi-scale approach for describing the behaviour of a single crack in the composite. The Non-Simultaneity Hypothesis is proposed, which suggests that the crucial events of fibre bridging action may occur non-simultaneously with increasing crack opening displacement, and the bridging parameters may be reliably determined based on the overall behaviour of a group of specimens. Additionally, the Three-Stage Micromechanics-based Model is developed to describe the bridging behaviour of the fibres with different embedded lengths. The parameters of the model were obtained according to the overall bridging behaviour and the Non-Simultaneity Hypothesis. The parameters were validated by comparing prediction with experiment and observation of bridging behaviour in the tests with varied embedded lengths and multiple fibres. In the framework of the novel concept Criterion-Dependent Reference Volume (CDRV), the effective volume fractions of the fibres assuming non-uniform distribution of the fibres were determined over the length of a hypothetical specimen. The behaviour of a single crack was then predicted at the composite level and compared to the equivalent experimental results. The whole multi-scale approach manifests a considerable capability for analysing the behaviour of Fibre-Reinforced, Cement-based Composite (FRCC). Finally, the concept of Representative Continuum with Predetermined Cracking Sequence (RCPCS) is briefly explained for describing the stress-strain behaviour of SHCC in further development of the multi-scale approach. / Beton ist weltweit mit seinen vielfältigen Anwendungsmöglichkeiten zweifelsohne der wichtigste Baustoff. Trotz der vielen Vorteile weist der Beton eine niedrige Zugfestigkeit und ein sprödes Versagen auf. Eine vielversprechende Methode zur Verbesserung dieser stellt seine Bewehrung mit Kurzfasern dar. Mit lediglich ein oder zwei Volumengehalt Prozent von Hochleistungspolymerfasern könnte das Dehnungs-Verfestigungsverhalten (engl.: Strain-hardening behaviour) unter einachsiger Zugbelastung erreicht werden. Allerdings ist das Verhalten des SHCC (engl.: Strain-Hardening Cementitious Composite) abhängig von dem Belastungsregime. Am kritischsten ist das zyklische Zug-Druck-Wechselbelastungsregime, denn dadurch wird kein duktiles Verhalten nach nur mehreren hundert Zyklen möglich sein, weil eine starke Degradation des Faserüberbrückungsvermögens stattfindet.
Diese Dissertation beschreibt die Ergebnisse von experimentellen Untersuchungen des Überbrückungsverhaltens der Polymerfasern in SHCC mit dem Schwerpunkt Zug-Druck-Wechselbelastung. Außerdem umfassen die Untersuchungen monotone Belastung. Das experimentelle Programm enthält Faserzugversuche, einseitige- und zweiseitige Einzelfaserauszugsversuche sowie mikroskopische Analysen an den Probekörpern nach den Experimenten. Das Überbrückungs- und Auszugsverhalten der einzelnen PVA-Faser eingebettet in einer zementbasierten Matrix wurden ausführlich charakterisiert und mit einem neuen Modell beschrieben. Das „Locking Front Model“ erläutert spezifische Phänomene des Zusammenspiels der PVA-Faser und Matrix nach der vollen Ablösung. Zusätzlich wurden die Mechanismen der Zusammenwirkung und Schädigungen unter zyklischer Belastung dargestellt. Die Schädigungsarten sind abhängig von den verschiedenen Parametern wie z. B. Faserwinkel zur Rissebene. Vor allem resultierte die Verschlechterung der Überbrückungseigenschaften aus den Schädigungen der Faser zwischen den Rissebenen im Zug-Druck-Wechselbelastungsregime. Die Intensität der Schädigungen ist meistens mit Zyklenanzahl, zyklischer Druckbelastung und Rissbreiten korreliert.
Die Ergebnisse der experimentellen Untersuchungen auf der Mikro- sowie Mesoebene wurden weiter ausgewertet, um einen Multiskalenansatz zur Bestimmung des Verhaltens eines einzelnen Risses im Werkstoff zu schaffen. Die „Non-Simultaneity Hypothese“ wurde vorgeschlagen, welche aussagt, den entscheidenden Vorgänge des Überbrückungsverhaltens der Fasern möglicherweise nicht gleichzeitig bei Vergrößerung der Rissöffnung auftreten. Deswegen sollten die Überbrückungsparameter am besten basierend auf dem allgemeinen Verhalten von vielen Proben in einer Gruppe bestimmt werden. Außerdem wurde das „Three-Stage Model“ zur Bestimmung des Überbrückungsverhaltens der Fasern mit verschiedenen Einbettungslängen entwickelt. Die Parameter des Modells wurden basierend auf dem allgemeinen Überbrückungsverhalten und der „Non-Simultaneity Hypothese“ bestimmt. Dann werden diese Parameter mit dem Überbrückungsverhalten anderer Einbettungslängen oder multipellen Fasern validiert. Im Rahmen des neuen Konzeptes, „Criterion-Dependent Reference Volume (CDRV)“, werden der effektive Volumenanteil der Faser in der Länge einer hypothetischen Probe aus Faserbeton mit ungleichmäßiger Faserverteilung bestimmt. Das Verhalten eines einzelnen Risses wird dann auf der Werkstoffebene bestimmt und mit den experimentellen Ergebnissen verglichen. Der gesamte Multiskalenansatz manifestiert wesentliche Fähigkeit zur Analyse des Verhaltens von Faserbeton. Schließlich wird ein neues Konzept, „Representative Continuum with Predetermined Cracking Sequence (RCPCS)“, zur Bestimmung der Spannungs-Dehnungsbeziehung des hochduktilen Betons (SHCC) als zukünftige Entwicklungsmöglichkeit des vorliegenden Multiskalenansatzes kurz vorgestellt.
|
7 |
On the shear behavior of mineral-bonded composites under impact loadingTawfik, Ahmed, Mechtcherine, Viktor 09 November 2022 (has links)
A mechanical testing device was developed for testing the behavior of mineral-bonded composites under impact shear loading. The device is based on the well-known double shear specimen configuration and was designed to be used in a gravity split-Hopkinson tension bar (SHTB), enabling shear testing at high loading rates. In this work, results from impact shear testing performed on a normal cementitious matrix (NSM) and strain-hardening cement-based composites (SHCC) tested by means of the new device are presented and discussed. Failure behavior and fracture modes are analyzed using optical measurements and digital image correlation (DIC).
|
8 |
Erhöhung der Dauerhaftigkeit von Wasserbauwerken durch faserbewehrte, zementgebundene KompositeReichardt, Michaela, Mechtcherine, Viktor, Müller, Steffen 10 November 2022 (has links)
Sehr viele Infrastrukturbauwerke haben bereits eine hohe Nutzungsdauer hinter sich und müssen instandgesetzt oder neu errichtet werden. Im Zuge der aktuellen Bestrebungen, mit möglichst geringen Materialeinsätzen die notwendige Bauwerkssicherheit zu erzeugen, rücken dünne Instandsetzungsschichten immer häufiger in den Fokus der Planenden. Aufgrund fehlender Beispielbauten und Umsetzungsrichtlinien werden solche Lösungen jedoch oft nicht ausgeführt. Im hier vorgestellten Beispiel wird anhand einer über 100 Jahre alten Schleuse die Möglichkeit einer Sanierung mit dünnen Schichten aus hochduktilem Beton (engl.: strain-hardening cement-based composites, SHCC) und Textilbeton (engl.: textile reinforced concrete, TRC) vorgestellt sowie Ergebnisse aus dem nunmehr dreijährigen Bauwerksmonitoring dargelegt.
|
9 |
Numerická podpora pro popis chování cementového kompozitu při únavové zkoušce / Numerical support for description of behavior of cement based composite during fatigue testHolušová, Táňa Unknown Date (has links)
The presented dissertation thesis is focused on analysis of alternative test method for determination of mechanical parameters of cement based composites. A disk shaped specimen with diameter 150 mm, thickness 60 mm was analysed and its modification for use on compact tension test (CT). Such a test is hereinafter referred to as modified compact tension (shortly MCT or MDCT)). This test configuration was chosen for testing the static and fatigue properties of cement based composites precisely because of its traditional use for fatigue testing of metallic materials. Specimens with a different cross-sections can also be used for MCT, but the work is exclusively focused on circular specimen, for example because it could be easily cut from drill core taken directly from the existing structure, on which the properties are more relevant to the age of the used concrete of the controlled structure. The modified compact tension test was firstly calibrated by numerical simulations involved the tuning of the shape of the numerical model and used material models of concrete and steel. Then the laboratory testing of modified compact tension on several levels were performed. The adequacy of the numerical model was verified against the pilot laboratory testing of the MCT test. Furthermore, the comparison of the modified compact tension test and its suitability for determining of fracture mechanical parameters of cement based composites with the three point bending test, which is the standardized test configuration for these purposes was performed. Another laboratory testing was focused of determining of fracture mechanical parameters of concrete mixture classified in strength class C30/37 and the pilot study of fatigue parameters of the same strength class of the concrete mix. The work was also presented numerical simulations of the push-out test, focused on the connection of concrete and steel with epoxy adhesive.
|
Page generated in 0.0345 seconds