• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] AMPLITUDE ANALYSIS OF THE DECAY D+ K (PI)-(PI)+(PI)+ IN FOCUS EXPERIMENT / [pt] ANÁLISE DE AMPLITUDES DO DECAIMENTO D+ KS(PI)-(PI)+(PI)+ NO EXPERIMENTO FOCUS

JUAN MARTIN OTALORA GOICOCHEA 26 February 2008 (has links)
[pt] O presente trabalho de tese é destinado ao estudo do decaimento do méson D+ KS(pi)−(pi)+(pi)+ com dados coletados pelo experimento FOCUS do Fermilab. O estado final, composto por 4 mésons pseudo- escalares, pode ser alcançado através de uma considerável variedade de sub- estruturas ressonantes. O proposito da análise é encontrar quais são estes possíveis canais intermediários através de suas contribuições e fases relativas. Para tanto, é utilizado o formalismo de Análise de Amplitudes usando o chamado Modelo Isobárico. A dinâmica do decaimento é definida através de uma função que contém as características (formas funcionais das ressonâncias, distribuição angular, etc) dos canais que intervêm no decaimento e cujo domínio é um espaço o de fase determinado por 5 invariantes (devido às restrições de decaimento em quatro corpos sem spin). A função é então ajustada ao conjunto de dados coletados. Nos resultados, verificamos uma grande contribuição do méson vetor-axial a1(1260) (52%) seguido do vetor-axial K1(1400) (34%). Além disso, o modelo apresenta contribuição da ressonância (sigma) (cerca de 8%, vinda de a1(sigmapi)KS e sigmaKSpi) e uma razoável contribuição da ressonância escalar K− (14%). O estado K já foi visto em seu modo neutro em outros decaimentos de charme, porém ainda não em seu modo carregado. Não encontramos contribui ção significativa do decaimento direto em 4 corpos (não- ressonante). Esta tese vem se somar ao esforço no entendimento da dinâmica das intera ções fortes a baixas energias, que nos últimos anos tem ganhado da física de mésons charmosos uma importante contribuição. / [en] This thesis is devoted to the study of the decay D+ KS(pi)− (pi)+(pi)+ with data collected from the FOCUS experiment, at Fermilab. The final state composed of 4 pseudo-scalars can be produced through a number of resonant sub-structures. The purpose of this analysis is to find the contributing intermediate states by measuring their relative strenghts and phases. For that, the Amplitude Analysis formalism is used, with the so-called Isobar Model. The decay dynamics is described through a function which has the features of the contributing channels (functional forms of the resonances, angular distribution, etc) and which domain is a phase space determined by 5 invariants (due to the kinematical constraints of a 4- body spinless decay). The data sample is thus fitted to this function. Our results show a dominant contribution of the axial- vector meson a1(1260) (52%), followed by the K1(1400) axial-vector (34%). Moreover, the model presents a contribution from the sigma meson (about 8% as a1(sigmapi)KS and sigmaKSpi) and a significant contribution from the scalar k−. The k state has been reported in its neutral mode in other charm decays but not is its charged mode. We find no significant contribution from the direct 4-body decay (non-resonant). This work adds to the effort in the understanding of the strong-interaction dynamics at low energies, which in recent years have been receiving an important contribution from charm meson physics.
2

Effective field theories of heavy-quark mesons

Alhakami, Mohammad Hasan M. January 2015 (has links)
We study the masses of the low-lying charm and bottom mesons within the framework of heavy-hadron chiral perturbation theory. We work to third order in the chiral expansion, where meson loops contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops. This ensures that their imaginary parts are consistent with the observed widths of the D-mesons. The lowest odd- and even-parity, strange and non-strange mesons provide enough constraints to determine only certain linear combinations of the low-energy constants (LECs) in the effective Lagrangian. We comment on how lattice QCD could provide further information to disentangle these constants. Then we use the results from the charm sector to predict the spectrum of odd- and even-parity of the bottom mesons. The predicted masses from our theory are in good agreement with experimentally measured masses for the case of the odd-parity sector. For the even-parity sector, the $B$-meson states have not yet been observed; thus, our results provide useful information for experimentalists investigating such states. The near degeneracy of nonstrange and strange scalar $B$ mesons is confirmed in our predictions using $\mathrm{HHChPT}$. Finally,we show why previous approaches of using $\mathrm{HHChPT}$ in studying the mass degeneracy in the scalar states of charm and bottom meson sectors gave unsatisfactory results. Interactions between these heavy mesons are treated using effective theories similar to those used to study nuclear forces. We first look at a strongly-interacting channel which produces a bound or virtual state and a dimer state which couples weakly to a weakly-interacting channel to produce a narrow resonance. We also look at the short-range interactions in two channels. We consider two cases: two channels where one has a strong $s$-wave interaction which produces bound or virtual states, and a dimer state which couples weakly to weakly-coupled channels which in turn can produce narrow resonances. For each of these systems, we use well-defined power-counting schemes. The results can be used to investigate resonances in the charmonium and bottomonium systems. We demonstrate how the method can be applied to the $X(3872)$. The widths of the $X(3872)$ for decay processes to $\bar{D}^0 D^{*0}$ and $\bar{D}^0D^0\pi$ are calculated. We use these results to obtain the line shapes of the $X(3872)$ under different assumptions about the nature of this state.

Page generated in 0.0267 seconds