• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 80
  • 53
  • 14
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 525
  • 525
  • 120
  • 76
  • 72
  • 42
  • 42
  • 41
  • 39
  • 38
  • 34
  • 34
  • 34
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Kinetics of the reactions of active nitrogen with methyl chloride and ethylene.

Brown, George Ronald. January 1970 (has links)
No description available.
112

The physical kinetics of water in Yucca Mountain zeolites via quasielastic neutron scattering

Jensen, Jeremy Davis. January 2005 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2005. / "May, 2005." Includes bibliographical references (leaves 75-78). Online version available on the World Wide Web.
113

An experimental and theoretical investigation of the nonlinear behavior of heterogeneous reactions on platinum catalysts

McMillan, Noah. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Jochen Lauterbach, Dept. of Chemical Engineering. Includes bibliographical references.
114

Kinetics of trace metals sorption on and desorption from soils developing predictive models /

Shi, Zhenqing. January 2006 (has links)
Thesis (Ph. D.)--University of Delaware, 2006. / Principal faculty advisor: Herbert E. Allen, Dept. of Civil & Environmental Engineering. Includes bibliographical references.
115

Effect of localized structural perturbations on dendrimer structure

Gabriel, Christopher, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 323-332).
116

Development of methods for determination of adsorption kinetics at metal electrodes

Moyana, Agata 01 January 1996 (has links)
Adsorption at metal electrodes is usually a very fast process and it plays a most important role in many areas of industry. The thermodynamics of the process are well known for many systems. However, there is currently no good method that allows a determination of very fast kinetics of adsorption to be made. Previously, many attempts at evaluation of kinetic parameters of adsorption were made, but in moat cases, due to the inadequacy of the experimental methods used, the parameters obtained were much lower than expected. This thesis aims at providing the means for determining the kinetics of adsorption at metal electrodes. The methods herein described are based on two different experimental techniques. These techniques are: (i) fast cyclic voltammetry (FCV, potential sweep rate up to 100000 V/s) and (ii) high frequency AC and FFT SW (Fast Fourier Transform Square-wave) voltammetry (frequency up to 50 MHz) at ultramicroelectrodes (5 or 6.25 ìm in radius). A theoretical description of the adsorption process for both kinds of experiments is presented. A simulation program was written to provide a better understanding of the process and to elucidate the development of methods for determining the kinetics of adsorption. Thermodynamic and kinetic descriptions of the process are based on the Frumkin adsorption isotherm. Both the equilibrium constant and the adsorption rate constant are treated as functions of potential and the electrode coverage. Comparison of results for different systems is presented as an analysis of the dependence of the adsorption rate constant on the equilibrium constant. FCV proved to be useful in the evaluation of kinetics of chemisorption (standard rate constant in the range of 10<sup>6</sup> s$\sp{-1})$ but the results for adsorption of aliphatic alcohols were unreliable. High frequency AC methods allowed the determination of kinetics of physical adsorption. It was found that the activation energy of the adsorption process can be expressed as a linear combination of the electrical component of the standard free energy of adsorption (a major contribution) and the energy of lateral interactions (a minor contribution). At the zero charge potential the rate constant reaches the maximum value of $\rm(4.6\pm0.3)10\sp9\ s\sp{-1}.$
117

OH* Chemiluminescence: Pressure Dependence of O + H + M = OH* + M

Donato, Nicole 2009 December 1900 (has links)
The measure of chemiluminescence from the transition of the hydroxyl radical from its electronically excited state (A^2 Sigma^positive) to its ground state (X^2 Pi) is used in many combustion applications for diagnostic purposes due to the non-intrusive nature of the chemiluminescence measurement. The presence of the ultraviolet emission at 307nm is often used as an indicator of the flame zone in practical combustion systems, and its intensity may be correlated to the temperature distribution or other parameters of interest. To date, the measurement of the excited state OH, OH*, is mostly qualitative. With the use of an accurate chemical kinetics model, however, it is possible to obtain quantitative measurements. Shock-tube experiments have been performed in highly diluted mixtures of H2/O2/Ar at a wide range of pressures to evaluate the pressure-dependent rate coefficient of the title reaction. In such mixtures the main contributing reaction to the formation of OH* is, O H M = OH* M. R1 Previous work has determined the reaction rate of R1 at atmospheric conditions and accurately predicts the amount of OH* experimentally produced. At elevated pressures up to 15 atm, which are of interest to the gas turbine community, the currently used reaction rate of R1 (i.e., without any pressure dependence) significantly over predicts the amount of OH* formed. This work provides the pressure dependence of R1. The new reaction rate is able to reproduce the experimental data over the range of conditions studied and enables quantitative measurements applicable to practical combustion environments.
118

Catalytic kinetics and thermal management in microchemical systems for distributed energy and portable power generation

Federici, Justin Alexander. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: Dionisios G. Vlachos, Dept. of Chemical Engineering. Includes bibliographical references.
119

Kinetics and dynamics of adsorption on single crystal semiconductor and metal surfaces

Reeves, Christopher Thomas. January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI Company.
120

Multicomponent adsorption in heterogeneous microporous solids /

Ding, Li Ping. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.

Page generated in 0.0573 seconds