Spelling suggestions: "subject:"[een] CLASSIFIERS COMMITTEE"" "subject:"[enn] CLASSIFIERS COMMITTEE""
1 |
[en] INTELLIGENT SYSTEM FOR THE IDENTIFICATION OF FRAUD SUSPECTS IN WATER CONSUMPTION / [pt] SISTEMA INTELIGENTE PARA IDENTIFICAÇÃO DE SUSPEITOS DE FRAUDE NO CONSUMO DE ÁGUAGUILHERME VINICIUS LIMA DOS ANJOS 11 January 2023 (has links)
[pt] Um dos maiores problemas de todas as empresas prestadoras de serviço de sanea-mento e distribuição de água é o de perdas oriundas de irregularidades (comerciais). Dentre os países com mais de 20 milhões de habitantes que mais sofrem desse tipo de perdas, o Brasil ocupa a 14º posição com 40% de perdas na distribuição. A Em-presa A, estudo de caso deste trabalho, é uma companhia brasileira que atua no setor de saneamento e distribuição de água e, atua, principalmente, em 3 regiões, com valores de médias percentuais de perdas, em 2021, de 19%, 30% e 43%, respecti-vamente. Essas perdas são derivadas de muitos problemas, mas as principais são oriundas das fraudes nas ligações dos medidores de água, por exemplo: ligações clandestinas, by-pass e derivação de ramal. A principal forma de combater esse tipo de fraude é através de inspeções nos clientes. Geralmente utiliza-se um conjunto de heurísticas para identificar o suspeito de tal fraude ou irregularidade, porém esses métodos não retornam boas precisões. Na Empresa A, a precisão alcançada através das inspeções varia de 3% a 17% de região para região. Com isso, conclui-se que o procedimento não é eficaz. Sendo assim, o objetivo deste trabalho é desenvolver um sistema inteligente que possa identificar, com maior exatidão, o perfil de con-sumo do cliente que possui a fraude. O sistema desenvolvido é composto por duas metodologias baseadas em diversos algoritmos supervisionados de aprendizado de máquina. A primeira utiliza um filtro com intuito de agrupar os clientes com perfis similares. A segunda faz uso de um algoritmo evolutivo inspirado em computação quântica para a busca de hiperparâmetros e atributos. Além disso, ambas conside-ram comitês e exploram a utilização de variáveis históricas e exógenas pertinentes ao contexto. Os resultados obtidos mostraram-se superiores nas avaliações, quando comparadas aos verificados na Empresa A, alcançando até 44% de taxa de acerto. / [en] One of the biggest problems faced by all companies that provide sanitation and water distribution services is that of losses arising from (commercial) irregularities. Among the countries with more than 20 million inhabitants that suffer the most from this type of loss, Brazil occupies the 14th position with 40% of losses in dis-tribution. Company A, the case study of this work, is a Brazilian company that ope-rates in the sanitation and water distribution sector and operates mainly in 3 regions, with average percentage values of losses, in 2021, of 19%, 30 % and 43%, respec-tively. These losses derive from many problems, but the main ones arise from fraud in the connections of water meters, for example: clandestine connections, by-pass and branch derivation. The main way to combat this type of fraud is through custo-mer inspections. Generally, a set of heuristics is used to identify the suspect of such fraud or irregularity, but these methods do not return good accuracy. At Company A, the accuracy achieved through inspections varies from 3% to 17% from region to region. Thus, it is concluded that the procedure is not effective. Therefore, the objective of this work is to develop an intelligent system that can identify, with greater accuracy, the consumption profile of the customer who has the fraud. The developed system is composed of two methodologies based on several supervised machine learning algorithms. The first uses a filter in order to group customers with similar profiles. The second makes use of an evolutionary algorithm inspired by quantum computing to search for hyperparameters and attributes. In addition, both consider committees and explore the use of historical and exogenous variables re-levant to the context. The results obtained were superior in the evaluations, when compared to those verified in Company A, reaching up to 44% of success rate.
|
Page generated in 0.0687 seconds