• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 824
  • 301
  • 164
  • 115
  • 62
  • 42
  • 32
  • 26
  • 17
  • 16
  • 14
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 1903
  • 245
  • 224
  • 214
  • 173
  • 152
  • 151
  • 135
  • 132
  • 118
  • 115
  • 105
  • 104
  • 102
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

A fundamental study of nanocomposite hard coatings formed by ion-assisted deposition

Brunell, Ian January 1999 (has links)
No description available.
512

Dimensionally confined semiconductors

Nayak, Rekha R. January 1998 (has links)
No description available.
513

Bioactive Surgical Implant Coatings with Optional Antibacterial Function

Lilja, Mirjam January 2013 (has links)
Device associated infections are a growing problem in the field of orthopaedics and dentistry. Bacteria adhering to implant surfaces and subsequent biofilm formation are challenging to treat with systemic administered antibiotics. Functionalization of implant surfaces with therapeutic coatings that are capable of inhibiting bacterial adhesion are therefore considered as a straight forward strategy to treat and prevent implant related infections. In this thesis, the use of crystalline, arc deposited TiO2 and biomimetic hydroxyapatite (HA) coatings were evaluated with respect to their potential as antibacterial surface modifications for bone-anchored implants. UV light induced photocatalysis of anatase dominated TiO2 coated surfaces was shown to provide a bactericidal effect against S. epidermidis under clinically relevant illumination times and doses. Major parts of the drug release work carried out was based on biomimetic HA (HA-B) coated fixation pins. The analysis of the coating characteristics revealed that the nanoporous structure of HA-B coatings in addition to the chemical composition and surface charge are essential parameters that influence the drug carrier performance. Loading by adsorption was demonstrated to be a feasible approach to quickly incorporate antibiotics. The controlled release of antibiotics was shown to facilitate bactericidal effects against S. aureus over application-relevant time periods, even when exposed to biomechanical forces during insertion into bone model materials. Antibiotic incorporation during coating growth was shown to promote somewhat longer drug release time periods than those obtained using adsorption loading. In summary, functionalization of implant surfaces with bioactive and biocompatible coatings is a promising concept to impact the clinical success for bone-anchored applications. The additional feature of optional, on-demand antibacterial properties of these coatings through either on-site drug release or photocatalytic antibacterial treatment is advantageous for the prevention and effective treatment of devices-associated infections. Both strategies provide an immediate response to the implant contamination by bacteria and are believed to contribute towards minimizing the origin of post-surgical infections, while at the same time improving the interfacial stability between implant and bone.
514

Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage

Taylor, John Abner 12 1900 (has links)
Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage.
515

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Samuel, Sonia 05 1900 (has links)
Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior wear resistance than Ti-6Al-4V.
516

Samband mellan tjockleken hos PVD-skikt och förslitningsbeteendet vid svarvning / The relationship between coating thickness for PVD-coatings and wear behavior in turning

Landälv, Ludvig January 2008 (has links)
This project has as main goal to study the influence of the coating thickness, deposited by arc-PVD- technology, on the wear resistance of coated cemented carbide inserts in three different turning operations. An additional effort has also been made to develop a new test method for evaluating flank wear resistance. Three different coating types (Coating A, Coating B and Coating C) have been studied in three distinctive thicknesses (2, 4 and 6 μ m) for each type. For two of the coating types (Coating A and B) special studies has been done with the thickest coating, creating two additional coating versions of the thickest coating, by changing various deposition parameters, with the aim to enhance the cohesive properties of the coating and lower the residual stresses at the cutting edge. The results show increased crater wear resistance with increased coating thickness for all coating types, but the amount of increase changes with coating type (Coating A>B>C). Flaking wear resistance decreased with increased coating thickness for all coating types. Further the high temperature version of Coating A, showed a significant increase in the flaking wear resistance compared to the standard version of Coating A. The flank wear test showed an increased resistance with thicker coatings in all cases except for the 6 μ m version of Coating C. The flank wear resistance of the most flank wear resistant coatings (Coating B, C) was also successfully examined in a new developed test method. The method suppressed excessive crater wear on the rake face and presented a high abrasive wear rate on the flank and some flaking on the rake face. The amount of flaking is judged not to influence the testing of the flank wear resistance. For all the tested coatings in the new test an increase in the coating thickness resulted in better flank wear resistance.
517

High speed very thin films with reverse roll coatings : an experimental investigation of reverse roll coating of fluids using rigid and deformable rolls at high speeds

Shibata, Yusuke January 2012 (has links)
The objective of a coating operation is to transfer a defect free liquid film onto a continuous substrate in order to meet the requirements of the final products. Mainly two concerns govern the process. The first concern is the economics of the process and the second concern is the quality of the coated film. The economics of the process are dictated by the speed of coating and the film thickness. Clearly, higher speeds mean better productivity hence less cost of operation and thinner films are desirable because less material is being used. Quality is governed by film uniformity and integrity, indicating that the film will perform as designed. Film defects such as streaks or tiny air bubbles are indication that the film properties are not uniform rendering it unacceptable to customers. One of the most versatile coating systems to achieve thin films at high speeds is reverse roll coating which has been used for a long time all over the world. At low speed, typically 1m/s, this coating operation is inherently stable and with small gaps of order 100 microns can ii lead to film thickness of order 30-50 microns. Much research, theoretical and experimental, has been devoted to this coating flow but only at low speeds and for large gaps (>100 microns). There are no comprehensive data how very thin films, 20 microns and less (particularly lower limits in the region of 5 microns) can be achieved at high speeds, of 2 or more metres per second. This study is concerned precisely with this aim, that of investigating the effect of large speeds and small roller gaps (rollers nearly touching or in elastohydrodynamic contact) to achieve the very thin films desired by modern applications (electronics, medical and others). In order to achieve this aim, a rig was designed and built to enable to understand the effect of various coating conditions and liquid properties on the metered film thickness and coating instability. To achieve thin films at high speeds, small roll gap and low viscosity are needed, however flow instabilities will develop under these conditions. To achieve stable coating window at high speeds high surface tension is needed. It was found that the roll gap and the viscosity have complicated effect on the coating window. In the case of low viscosity liquid (7mPa.s), small roll gaps are needed, whereas in the case of high viscosity liquid (more than 30mPa.s), large gaps are needed. It was found that Weber number is better describer for ribbing instability in rigid reverse roll coating unlike in rigid forward roll coating in which capillary number is the one. In addition the potential of reverse deformable roll coating (rolls in elastohydrodynamic contact) was investigated in order to achieve much thinner films at higher speeds. As a result of the investigation of reverse deformable roll coating, it was found that there is a possibility to get much thinner stable films at much higher speeds compared to reverse rigid roll coating. The liquid transfer from an applicator roller to a PET film was investigated in this study. It was found that air stagnation at downstream meniscus and air entrainment at upstream meniscus depend on the liquid properties such as viscosity and surface tension and coating conditions such as web tension and wrap angle of web. As a result, wet film instability also depends on liquid properties and coating conditions. It was found that air stagnation causes streaks on the wet film and air entrainment caused bubbles on the wet film. To get a stable wet film, it was found that suitable viscosity and high surface tension were needed.
518

Functional properties of whey protein and its application in nanocomposite materials and functional foods

Walsh, Helen 01 January 2014 (has links)
Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when produced with probiotic bacteria. Carbonation was applied to a drinkable yogurt to enhance its benefits. This process helps reduce the oxygen levels in the foodstuff thus potentially being advantageous to the microaerophilic probiotic bacteria while simultaneously producing a product, somewhat similar to kefir, which has the potential to fill a niche in the functional foods market. Yogurt was combined with a syrup to reduce its viscosity, making it drinkable, and also to allow infusion of CO2. This dilution reduced the protein content of the drink and so whey protein concentrate was added to increase levels in the final product. High-methoxyl pectins were used to provide stability by reducing the tendency of the proteins to sediment out. The objectives of this study were to develop a manufacturing technology for drinkable carbonated symbiotic yogurts, and to evaluate their physicochemical properties. Two flavors of yogurt drink, pomegranate and vanilla, were formulated containing inulin as prebiotic, along with probiotic bacteria, producing symbiotic dairy beverages.
519

INVESTIGATIONS ON THE CORROSION RESISTANCE OF METALLIC BIPOLAR PLATES (BPP) IN PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFC) - UNDERSTANDING OF THE EFFECTS OF MATERIAL, COATING AND MANUFACTURING

Dur, Ender 15 November 2011 (has links)
Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples meet the 2015 target of the U.S. Department of Energy, surface coating is required. 5- ZrN and CrN coated BPPs exhibited higher corrosion resistance meeting DOE target while TiN coated samples had the lowest corrosion resistance. Higher coating thicknesses improved the corrosion resistance of the BPPs. 6- Process sequence between coating and manufacturing is not significant for hydroforming case (ZrN and CrN) and stamping case (CrN) in terms of the corrosion resistance. In other words, coating the BPP`s substrate material before manufacturing process does not always decrease the corrosion resistance of the BPPs.
520

Immobilisation d’un système lactoperoxydase dans un enrobage de chitosane dans le but de prolonger la conservation des mangues / Immobilization of a lactoperoxidase system in a coating of chitosan to extend the shelf life of mangoes

Cisse, Mohamed 06 July 2012 (has links)
L'exportation des mangues est limitée par le mûrissement rapide et la prolifération microbienne sur les fruits. Cette thèse propose une nouvelle approche sûre et saine utilisant des molécules d'origine naturelle pour améliorer la conservation post-récolte des mangues et ainsi participer à la préservation de la santé des consommateurs et à une amélioration des potentialités du commerce international de certains pays exportateurs. Ces travaux ont montré que l'immobilisation du système lactoperoxydase dans le film de chitosane appliqué sur l'épiderme des mangues pouvait maintenir la qualité microbiologique et physicochimique des fruits traités. Le couplage Chitosane-Système lactoperoxydase a prolongé la durée de conservation des mangues durant plus de deux semaines sans altérer leurs qualités organoleptiques.Ce travail a permis également de mettre en évidence la synergie entre le système lactoperoxydase et la concentration de chitosane. Un enrobage optimum de 1% de chitosane a permis de fixer le système enzymatique et de maintenir les mangues en bon état sanitaire. La présence d'iode dans le système lactoperoxydase n'agit pas de manière significative sur la conservation des mangues. / The mango export is limited by the rapid ripening and microbial growth on the fruit. This thesis proposes a new approach to safe and healthy using natural molecules to improve post-harvest conservation of mango and thus help preserve the health of consumers and improved the potential of international trade in certain exporting countries. This work shown that the immobilization of the lactoperoxidase in the chitosan film and applied as coating of mangoes could maintain the microbiological and physicochemical quality of fruits. Chitosan-coupling lactoperoxidase system extended the shelf life of mangoes for over two weeks without affecting their organoleptic quality.This work also helped to highlight the synergy between the lactoperoxidase and the concentration of chitosan. An optimum coating made from 1% chitosan allowed to fix the enzyme system and to maintain the mangoes in a good sanitary condition. The presence of iodine in the lactoperoxidase does not act significantly on the conservation of mangoes.

Page generated in 0.0294 seconds