• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 10
  • 3
  • Tagged with
  • 32
  • 32
  • 20
  • 15
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise da modelagem numérica do vento para avaliação do potencial eólico em um terrano complexo empregando CFD

Búrigo, Vanessa Crippa January 2014 (has links)
O presente trabalho apresenta a modelagem do escoamento de ar sobre um terreno complexo empregando, e comparando os resultados, três programas comerciais de previsão de potencial eólico, WaSP, Meteodyn WT e WindSim. Por se tratar de um modelo simplificado, o programa WaSP nem sempre é adequado para previsão de energia em terrenos muito complexos pois não é capaz de prever turbulência, separação de escoamento e efeitos de estabilidade existentes neste tipo de terreno. Para que se consiga modelar a turbulência existente de maneira mais coerente, utilizam-se programas de mecânica dos fluidos computacional como o Meteodyn WT e o WindSim que modelam o escoamento através das equações médias de Reynolds. A finalidade do estudo é identificar a capacidade de previsão das velocidades de vento por meio de cada um dos programas em um parque eólico localizado na Chapada da Diamantina, tendo em vista que a correta previsão da produção de energia depende de um entendimento correto e detalhado dos recursos disponíveis. Avaliando apenas condição atmosférica neutra e comparando os resultados obtidos, conclui-se que o programa WindSim obteve o menor erro na estimativa da velocidade do vento, -3,7% quando comparado aos outros programas WaSP e Meteodyn, -5,1% e -6,5% respectivamente. O maior erro de aproximação foi obtido pelo programa WaSP, +11% quando comparado aos outros programas Meteodyn e WindSim, +10,6% e +7,9% respectivamente. Para o programa Meteodyn foram avaliados casos com diferentes condições de estabilidade, o erro máximo e mínimo foi de +10,6% e -6,5%, respectivamente em atmosfera estável, mantendo-se elevado. O programa WindSim permite a alteração de variáveis que são fixas no Meteodyn e também a simulação dos efeitos de estabilidade através da inclusão da equação de energia inicializada através do comprimento de Monin-Obukhov o que, implicou em uma melhora significativa nos resultados obtidos e em um maior tempo computacional. O erro, menor e maior, apresentado pelo programa WindSim foi reduzido a, -1,8% e +4,4% respectivamente. Destaca-se que as conclusões obtidas se aplicam ao caso estudado. / This work studies the air flow modeling over a complex terrain using and comparing the results of three commercial programs that estimates the wind field in a site: WaSP, Meteodyn WT and WindSim. Being WAsP a simplified model, it is not always suitable to estimate the flow in complex terrain because it is not able to predict the turbulence, flow separations and stability effects present in these kind of terrains. To model the existing turbulence two computational fluid mechanics programs i.e. Meteodyn WT and WindSim, which models the flow through the Reynolds Averaged Navier-Stokes equations have been used. This study aims to identify the wind speed predictive capacity of each program in a windfarm located on Chapada da Diamantina, as a correct production prediction depends on a correct estimation of the wind field. Evaluating only neutral atmospheric setup and comparing it with the measures, WindSim had the lowest wind speed estimation error, -3.7% compared with WaSP and Meteodyn programs, that provided -5.1% and -6.5% respectively. The greatest error was obtained by WaSP program, +11%, followed by Meteodyn, +10.6% and WindSim, +7.9%. WindSim enables changes in some variables that are fixed in Meteodyn and enables also the simulation of stability effects through the introduction of the energy equation with a Monin-Obukhov length initialization. For Meteodyn program different stabilities were evaluated, but the results obtained were not satisfactory. The maximum and minimum error were reduced to +10.6% and -6.5%, respectively, in stable atmosphere. Due to the specific site studied conditions the simulation of stability effects resulted in a significant improvement in the results even though a larger computational time. Enabling the energy equations setting up stable atmospheric stability, both WindSim errors are reduced to -1.8% and +4.4% respectively. It is noteworthy that the conclusions apply to the case studied.
12

Análise da modelagem numérica do vento para avaliação do potencial eólico em um terrano complexo empregando CFD

Búrigo, Vanessa Crippa January 2014 (has links)
O presente trabalho apresenta a modelagem do escoamento de ar sobre um terreno complexo empregando, e comparando os resultados, três programas comerciais de previsão de potencial eólico, WaSP, Meteodyn WT e WindSim. Por se tratar de um modelo simplificado, o programa WaSP nem sempre é adequado para previsão de energia em terrenos muito complexos pois não é capaz de prever turbulência, separação de escoamento e efeitos de estabilidade existentes neste tipo de terreno. Para que se consiga modelar a turbulência existente de maneira mais coerente, utilizam-se programas de mecânica dos fluidos computacional como o Meteodyn WT e o WindSim que modelam o escoamento através das equações médias de Reynolds. A finalidade do estudo é identificar a capacidade de previsão das velocidades de vento por meio de cada um dos programas em um parque eólico localizado na Chapada da Diamantina, tendo em vista que a correta previsão da produção de energia depende de um entendimento correto e detalhado dos recursos disponíveis. Avaliando apenas condição atmosférica neutra e comparando os resultados obtidos, conclui-se que o programa WindSim obteve o menor erro na estimativa da velocidade do vento, -3,7% quando comparado aos outros programas WaSP e Meteodyn, -5,1% e -6,5% respectivamente. O maior erro de aproximação foi obtido pelo programa WaSP, +11% quando comparado aos outros programas Meteodyn e WindSim, +10,6% e +7,9% respectivamente. Para o programa Meteodyn foram avaliados casos com diferentes condições de estabilidade, o erro máximo e mínimo foi de +10,6% e -6,5%, respectivamente em atmosfera estável, mantendo-se elevado. O programa WindSim permite a alteração de variáveis que são fixas no Meteodyn e também a simulação dos efeitos de estabilidade através da inclusão da equação de energia inicializada através do comprimento de Monin-Obukhov o que, implicou em uma melhora significativa nos resultados obtidos e em um maior tempo computacional. O erro, menor e maior, apresentado pelo programa WindSim foi reduzido a, -1,8% e +4,4% respectivamente. Destaca-se que as conclusões obtidas se aplicam ao caso estudado. / This work studies the air flow modeling over a complex terrain using and comparing the results of three commercial programs that estimates the wind field in a site: WaSP, Meteodyn WT and WindSim. Being WAsP a simplified model, it is not always suitable to estimate the flow in complex terrain because it is not able to predict the turbulence, flow separations and stability effects present in these kind of terrains. To model the existing turbulence two computational fluid mechanics programs i.e. Meteodyn WT and WindSim, which models the flow through the Reynolds Averaged Navier-Stokes equations have been used. This study aims to identify the wind speed predictive capacity of each program in a windfarm located on Chapada da Diamantina, as a correct production prediction depends on a correct estimation of the wind field. Evaluating only neutral atmospheric setup and comparing it with the measures, WindSim had the lowest wind speed estimation error, -3.7% compared with WaSP and Meteodyn programs, that provided -5.1% and -6.5% respectively. The greatest error was obtained by WaSP program, +11%, followed by Meteodyn, +10.6% and WindSim, +7.9%. WindSim enables changes in some variables that are fixed in Meteodyn and enables also the simulation of stability effects through the introduction of the energy equation with a Monin-Obukhov length initialization. For Meteodyn program different stabilities were evaluated, but the results obtained were not satisfactory. The maximum and minimum error were reduced to +10.6% and -6.5%, respectively, in stable atmosphere. Due to the specific site studied conditions the simulation of stability effects resulted in a significant improvement in the results even though a larger computational time. Enabling the energy equations setting up stable atmospheric stability, both WindSim errors are reduced to -1.8% and +4.4% respectively. It is noteworthy that the conclusions apply to the case studied.
13

Análise da modelagem numérica do vento para avaliação do potencial eólico em um terrano complexo empregando CFD

Búrigo, Vanessa Crippa January 2014 (has links)
O presente trabalho apresenta a modelagem do escoamento de ar sobre um terreno complexo empregando, e comparando os resultados, três programas comerciais de previsão de potencial eólico, WaSP, Meteodyn WT e WindSim. Por se tratar de um modelo simplificado, o programa WaSP nem sempre é adequado para previsão de energia em terrenos muito complexos pois não é capaz de prever turbulência, separação de escoamento e efeitos de estabilidade existentes neste tipo de terreno. Para que se consiga modelar a turbulência existente de maneira mais coerente, utilizam-se programas de mecânica dos fluidos computacional como o Meteodyn WT e o WindSim que modelam o escoamento através das equações médias de Reynolds. A finalidade do estudo é identificar a capacidade de previsão das velocidades de vento por meio de cada um dos programas em um parque eólico localizado na Chapada da Diamantina, tendo em vista que a correta previsão da produção de energia depende de um entendimento correto e detalhado dos recursos disponíveis. Avaliando apenas condição atmosférica neutra e comparando os resultados obtidos, conclui-se que o programa WindSim obteve o menor erro na estimativa da velocidade do vento, -3,7% quando comparado aos outros programas WaSP e Meteodyn, -5,1% e -6,5% respectivamente. O maior erro de aproximação foi obtido pelo programa WaSP, +11% quando comparado aos outros programas Meteodyn e WindSim, +10,6% e +7,9% respectivamente. Para o programa Meteodyn foram avaliados casos com diferentes condições de estabilidade, o erro máximo e mínimo foi de +10,6% e -6,5%, respectivamente em atmosfera estável, mantendo-se elevado. O programa WindSim permite a alteração de variáveis que são fixas no Meteodyn e também a simulação dos efeitos de estabilidade através da inclusão da equação de energia inicializada através do comprimento de Monin-Obukhov o que, implicou em uma melhora significativa nos resultados obtidos e em um maior tempo computacional. O erro, menor e maior, apresentado pelo programa WindSim foi reduzido a, -1,8% e +4,4% respectivamente. Destaca-se que as conclusões obtidas se aplicam ao caso estudado. / This work studies the air flow modeling over a complex terrain using and comparing the results of three commercial programs that estimates the wind field in a site: WaSP, Meteodyn WT and WindSim. Being WAsP a simplified model, it is not always suitable to estimate the flow in complex terrain because it is not able to predict the turbulence, flow separations and stability effects present in these kind of terrains. To model the existing turbulence two computational fluid mechanics programs i.e. Meteodyn WT and WindSim, which models the flow through the Reynolds Averaged Navier-Stokes equations have been used. This study aims to identify the wind speed predictive capacity of each program in a windfarm located on Chapada da Diamantina, as a correct production prediction depends on a correct estimation of the wind field. Evaluating only neutral atmospheric setup and comparing it with the measures, WindSim had the lowest wind speed estimation error, -3.7% compared with WaSP and Meteodyn programs, that provided -5.1% and -6.5% respectively. The greatest error was obtained by WaSP program, +11%, followed by Meteodyn, +10.6% and WindSim, +7.9%. WindSim enables changes in some variables that are fixed in Meteodyn and enables also the simulation of stability effects through the introduction of the energy equation with a Monin-Obukhov length initialization. For Meteodyn program different stabilities were evaluated, but the results obtained were not satisfactory. The maximum and minimum error were reduced to +10.6% and -6.5%, respectively, in stable atmosphere. Due to the specific site studied conditions the simulation of stability effects resulted in a significant improvement in the results even though a larger computational time. Enabling the energy equations setting up stable atmospheric stability, both WindSim errors are reduced to -1.8% and +4.4% respectively. It is noteworthy that the conclusions apply to the case studied.
14

Wind turbines over a hilly terrain: performance and wake evolution / Vindturbiner över en kuperad terräng: prestanda och vakutbredning

Hyvärinen, Ann January 2018 (has links)
The aim of this licentiate thesis is to investigate wind-turbines placed in a complex-terrain environment. This is done by studying the flow around small-scale wind-turbine models placed over a landscape model with hills, and by comparing the results with corresponding data obtained over a flat terrain model. The studied flow features include the wind-turbine wake development and the turbine performance under different conditions, the effects from wake interactions, the influence of the ambient turbulence levels and the influence from a complex topography. Wind-tunnel measurements have been performed using particle image velocimetry and hot-wire anemometry to measure the velocity field. Additionally, numerical simulations, based on RANS modelling and actuator-disc techniques, have been made to support the experimental data and to gain further knowledge about the investigated flow cases. The results reveal that the hills promote a downward wake deflection behind the turbines and enhance the wind-turbine wake diffusion. As a consequence of this, and with the flow acceleration introduced by the hills, an improved power performance is seen for turbines exposed to wake-interference effects. A correlation is observed between the turbulence levels present in the flow, and the magnitude to which the hill-induced flow gradients influence the wake: Stronger wake deflections due to the hills are seen when the wind-turbine wake is more diffused. This is for instance the case when the wake of two tandem turbines is studied, or when higher ambient turbulence levels are present in the wind tunnel. A good qualitative agreement is seen when comparing the experimental and numerical results. The simulation results further indicate that the hills give rise to modulations of the wind-turbine wake. It is shown that these modulations can be reasonably captured by means of wake-superposition techniques, given that a wake model with sufficient accuracy is chosen. / Syftet med denna licentiatavhandling är att öka förståelsen om hur vindturbiner påverkas av en omgivande komplex terräng. Huvudsakligen betraktas luftströmningen kring småskaliga vindturbinsmodeller som placerats över en landskapsmodell med kullar. I tillägg görs jämförelser med resultat som erhållits då vindtubinerna placerats över en platt landskapsmodell. De studerade strömningsaspekterna inkluderar vindturbinernas vakutveckling och prestanda under olika förhållanden, inverkan från vakinteraktioner, inflytande från omgivande turbulensnivåer och inverkan från en komplex topografi. Vindtunnelmätningar har utf ̈orts där PIV och varmtrådsanemometri användes för att uppmäta hastighetsfält. I tillägg har numeriska simuleringar utförts baserade på RANS-modellering, där turbinens rotor beskrevs av en porös skiva. Simuleringarna gjordes som komplement till de experimentella mätresultaten för att få en ökad förståelse om de undersökta strömningsfallen. Resultaten från mätningarna och simuleringarna med kullar visar att terrängvariationerna främjar en nedåtgående vakförskjutning bakom turbinerna och ökar vindturbinernas vakdiffusion. Detta, i kombination med luftens acceleration över kullarna, resulterar i att en högre effektprestanda utvinns från en vindturbin vars inströmmande luftflöde störs av vaken från en framförliggande turbin. Vidare observeras kraftigare nedågående vakförskjutningar på grund av det kullriga landskapet då vindturbinsvakarna är mer diffunderade. Detta är exempelvis fallet då vaken bakom två turbiner placerade i en tandemkonfiguration studeras, eller när höga omgivande turbulensnivåer uppmäts i vindtunneln. En bra kvalitativ överensstämmelse kan ses mellan de experimentella och numeriska resultat som uppnås. Resultaten från simuleringarna indikerar dessutom att landskapet med kullar ger upphov till moduleringar av vindturbinens vak. Det visas att dessa moduleringar kan beskrivas någorlunda väl med hjälp av vaksuperpositionsmetoder, givet att en vakmodell med tillräckligt hög noggrannhet väljs. / <p>QC 20180122</p>
15

Factors influencing the structures of the Monterey Bay sea breeze

Duvall, Emily M. 03 1900 (has links)
Approved for public release, distribution is unlimited / The Monterey Bay sea breeze varies because of the influence of features such as inversions, clouds, synopticscale flow, and topography. The sea breeze is important because it impacts fire weather, air pollution, agriculture, and aviation operations, among other things. Analyses are conducted using a multi-quadric based program, which incorporates aircraft data, surface observations, and profiler data, to investigate the Monterey Bay sea breeze during 01-31 August 2003. Factors including inversions, cloud cover, amount of heating, distribution of heating, synoptic-scale flow, and topography are studied to determine their influence on the sea breeze. Six days are selected that best illustrate the factors that influence the structure of the Monterey Bay sea breeze. Results show that offs hore flow weakened the strength of the sea breeze and decreased the depth. A cooling trend in surface temperatures at the end of August also weakened the strength of the sea breezes and decreased the depth. Clouds are present during this period, which influenced the amount of heating, and consequently, the sea breeze response. The presence of a marine layer weakened the thermal gradient that in turn, weakened the sea breeze circulation. / Lieutenant Junior Grade, United States Naval Reserve
16

Wind resource accessment in complex terrain by wind tunnel modelling / modélisation en soufflerie du vent en terrain complexe pour l'évaluation du potentiel éolien

Conan, Boris 12 December 2012 (has links)
Afin de bénéficier de vents importants, un nombre croissant d'éoliennes est installé en terrain complexe. Cependant, un terrain complexe accroit la complexité de l'écoulement et donc la prédiction du potentiel éolien. Dans ce travail, le vent en terrain complexe est simulé en soufflerie. L'objectif est d'étudier la capacité de la modélisation en soufflerie.La partie basse de l'atmosphère, appelée couche limite atmosphérique, est le siège d'important gradients de vitesse et de turbulence. Dans la soufflerie, ils sont reproduits grâce à des obstacles placés dans la section d'essai. Leurs tailles varient en fonction du type de terrain à modéliser. Cette approche expérimentale est validée par des données terrain. La reproduction des conditions atmosphériques est le paramètre crucial pour une bonne modélisation.Pour évaluer le vent en terrain complexe, le choix de la zone à reproduire autour du site d'intérêt est une question centrale : elle doit tenir compte de l'effet des reliefs environnants mais doit être assez réduite pour préserver un facteur d'échelle raisonnable dans la soufflerie. Une série d'études sur des collines simplifiées est ainsi réalisé afin de déterminer l'étendue spatiale du sillage en aval d'un relief simplifié afin de rationaliser le choix de la zone d'étude.Deux cas réels sont ensuite traités, l'ile de Bolund au Danemark et la montagne Alaiz en Espagne. Les résultats sont bons pour l'estimation de la vitesse du vent, entre 5 et 10 % mais la modélisation de la turbulence est plus difficile, des écarts jusqu'à 100 % sont enregistrés comparés aux données terrain. / To benefit from strong winds, an increasing number of wind turbines are placed in complex terrains. But complex terrains means complex flows and difficult wind resource assessment. This study proposed to use wind tunnel modelling to evaluate the wind in a complex topography. The goal of this study is to evaluate the possibilities of wind resources assessment by wind tunnel modelling and to quantify the important modelling parameters. The lower part of the atmosphere, the atmospheric boundary layer (ABL) is defined by a velocity and a turbulence gradient. The ABL is reproduced in the wind tunnel by placing obstacles and roughness elements of different size representative to the type of terrain desired. The flow produced in the wind tunnel is validated against field data and a wise choice of the obstacles is discussed to reproduce the desired wind profile. The right reproduction of the inflow conditions is found to be the most important parameter to reproduce. The choice of the area to reproduce around a site in usually difficult to make in order to keep a low scaling factor and to account for the surrounding topography. A series of tests on simplified hills helps the experimentalist in this choice by enlightening the longitudinal and vertical extension of the wake downstream different hills shapes. Finally, two complex topographies are studied in two wind tunnels, the Bolund hill in Denmark and the Alaiz mountain in Spain. The results are giving good results, 5 to 10 %, for predicting the wind speed but more scatter is observed for the modelling of the turbulence, up to 100 %. The laboratory simulation of atmospheric flows proves to be a demanding but reliable tool for the prediction of the mean wind speed in complex terrain.
17

Mesoscale Simulations of Atmospheric Flow in Complex Terrain

Mohr, Matthias January 2003 (has links)
<p>The MIUU mesoscale model was further developed, in order to include information on large-scale atmospheric fields from global or regional atmospheric climate- and weather-prediction models. For this purpose, a new lateral boundary condition was developed and implemented into the model. The new lateral boundary condition is a combination of two existing conditions, namely the flow relaxation scheme and the tendency modification scheme.</p><p>Tests indicated that an optimum lateral boundary configuration would be obtained with moderate to strong flow relaxation at higher levels, small flow relaxation at lower levels (within the atmospheric boundary layer), upstream advection at the outermost 4 grid points, and 6% horizontal grid stretching starting at a substantial distance from the lateral boundaries. The flow relaxation coefficients should be specified carefully, in order to minimize the reflection of all kinds of waves at the lateral boundaries.</p><p>The summer thermal low in the mean-sea-level pressure field over North America is traditionally analyzed over the northern end of the Gulf of California. The position of this low is influenced by the application of the so-called plateau correction in obtaining mean-sea-level pressure values from highly elevated stations in North America. A model study indicated that the low should be located approximately 450 km to the north and somewhat to the east of the above location. </p><p>A statistical comparison of model results from two mesoscale models against upper-air and surface measurements from several sites was carried out. Statistical methods, however, give only an insufficient picture of overall model performance. A comparison between predicted and measured tracer concentrations could be used to better evaluate the overall performance of different models.</p><p>Sound propagation in the atmosphere was predicted in a mountain valley using a mesoscale atmospheric model together with a sound propagation model. This suggests that forecasts of sound propagation should be possible in future.</p>
18

Mesoscale Simulations of Atmospheric Flow in Complex Terrain

Mohr, Matthias January 2003 (has links)
The MIUU mesoscale model was further developed, in order to include information on large-scale atmospheric fields from global or regional atmospheric climate- and weather-prediction models. For this purpose, a new lateral boundary condition was developed and implemented into the model. The new lateral boundary condition is a combination of two existing conditions, namely the flow relaxation scheme and the tendency modification scheme. Tests indicated that an optimum lateral boundary configuration would be obtained with moderate to strong flow relaxation at higher levels, small flow relaxation at lower levels (within the atmospheric boundary layer), upstream advection at the outermost 4 grid points, and 6% horizontal grid stretching starting at a substantial distance from the lateral boundaries. The flow relaxation coefficients should be specified carefully, in order to minimize the reflection of all kinds of waves at the lateral boundaries. The summer thermal low in the mean-sea-level pressure field over North America is traditionally analyzed over the northern end of the Gulf of California. The position of this low is influenced by the application of the so-called plateau correction in obtaining mean-sea-level pressure values from highly elevated stations in North America. A model study indicated that the low should be located approximately 450 km to the north and somewhat to the east of the above location. A statistical comparison of model results from two mesoscale models against upper-air and surface measurements from several sites was carried out. Statistical methods, however, give only an insufficient picture of overall model performance. A comparison between predicted and measured tracer concentrations could be used to better evaluate the overall performance of different models. Sound propagation in the atmosphere was predicted in a mountain valley using a mesoscale atmospheric model together with a sound propagation model. This suggests that forecasts of sound propagation should be possible in future.
19

Wind resource accessment in complex terrain by wind tunnel modelling

Conan, Boris 12 December 2012 (has links) (PDF)
To benefit from strong winds, an increasing number of wind turbines are placed in complex terrains. But complex terrains means complex flows and difficult wind resource assessment. This study proposed to use wind tunnel modelling to evaluate the wind in a complex topography. The goal of this study is to evaluate the possibilities of wind resources assessment by wind tunnel modelling and to quantify the important modelling parameters. The lower part of the atmosphere, the atmospheric boundary layer (ABL) is defined by a velocity and a turbulence gradient. The ABL is reproduced in the wind tunnel by placing obstacles and roughness elements of different size representative to the type of terrain desired. The flow produced in the wind tunnel is validated against field data and a wise choice of the obstacles is discussed to reproduce the desired wind profile. The right reproduction of the inflow conditions is found to be the most important parameter to reproduce. The choice of the area to reproduce around a site in usually difficult to make in order to keep a low scaling factor and to account for the surrounding topography. A series of tests on simplified hills helps the experimentalist in this choice by enlightening the longitudinal and vertical extension of the wake downstream different hills shapes. Finally, two complex topographies are studied in two wind tunnels, the Bolund hill in Denmark and the Alaiz mountain in Spain. The results are giving good results, 5 to 10 %, for predicting the wind speed but more scatter is observed for the modelling of the turbulence, up to 100 %. The laboratory simulation of atmospheric flows proves to be a demanding but reliable tool for the prediction of the mean wind speed in complex terrain.
20

Processus de la couche limite atmosphérique stable hivernale en vallée alpine / Wintertime Stable Boundary-Layer Processes in Alpine Valleys

Arduini, Gabriele 06 June 2017 (has links)
La dynamique de la couche limite atmosphérique d'une vallée alpine est influencée par le relief environnant et par l’écoulement de grande échelle qui la surmonte. La paramétrisation de cette circulation atmosphérique requiert donc de caractériser finement ces effets. C'est l’objectif de ce travail de thèse : comprendre l’influence du relief environnant une vallée sur les bilans de masse et de chaleur au travers d’une section de cette vallée, par conditions stables et sèches et lorsque le vent synoptique est faible mais non négligeable. Le travail s’appuie sur des simulations numériques.Plusieurs vallées idéalisées ont tout d’abord été considérées: une vallée infiniment longue (bidimensionnelle) et une vallée tridimensionnelle, qualifiée de supérieure, ouvrant soit sur une plaine (cas “vallée-plaine”), soit sur une autre vallée, qualifiée d’inférieure. Cette seconde vallée est soit plus large (cas “drainage”) ou plus étroite (cas “quasi-stagnation”).Dans les vallées tridimensionnelles, deux régimes principaux ont été identifiés, quelle que soit le cas considéré : un régime transitoire, avant que le vent de vallée (descendant) ne se développe, puis un régime quasi-stationnaire, quand le vent de vallée est complètement développé. La présence d’une vallée inférieure réduit la variation de température le long de la vallée, de sorte que le vent de vallée y est plus faible que dans le cas vallée-plaine. En conséquence, la durée du régime transitoire augmente et est maximum pour le cas quasi-stagnation. Lorsque la vallée inférieure est très étroite, la variation de température peut même changer de signe, conduisant à un vent de vallée montant, de la vallée inférieure vers la vallée supérieure. Durant ce régime transitoire, le taux de refroidissement moyenné sur le volume de la vallée est maximum, sa valeur dépendant du cas considéré. En conclusion, les cas drainage et quasi-stagnation conduisent à une couche limite dans la vallée supérieure plus froide et plus profonde que dans le cas vallée-plaine.Dans le régime quasi-stationnaire, le taux de refroidissement moyenné sur le volume de la vallée est plus faible que dans le régime transitoire et varie peu en fonction du cas considéré. En effet, lorsque la vallée inférieure devient plus étroite, le réchauffement lié aux effets advectifs diminue car la vitesse du vent de vallée diminue, de sorte que la contribution (refroidissante) du flux de chaleur sensible diminue également. La conservation de la masse dans la couche limite de la vallée supérieure est assurée par un équilibre entre la convergence des vents de pente au sommet de la couche limite (alimenté par un courant de retour au-dessus (et en sens inverse) du vent de vallée descendant) et la divergence du vent de vallée, les effets de subsidence loin des parois de la vallée jouant un rôle négligeable.Le cas réaliste de la vallée de l’Arve autour de Passy durant une période d’observation intensive de la campagne de mesures PASSY-2015 a permis de caractériser l’impact des vallées environnant Passy sur les bilans de masse et de chaleur dans la vallée. Une couche d’air froid persistante se forme en fond de vallée, suite à l’advection d’air chaud associée au passage d’une crête anticyclonique au-dessus de l’Europe. Les écoulements le long des vallées tributaires présentent une grande variabilité durant la phase persistante de l’épisode, dépendant de la variabilité de l’écoulement à grande échelle, et ont un impact majeur sur l’intensité de la couche d’air froid et la hauteur de l’inversion qui la surmonte. La forte stratification près du sol conduit à leur décollement au-dessus du fond de vallée, les empêchant d'y pénétrer. L’évolution de l’écoulement à grande échelle durant l’épisode a un profond impact sur la dynamique proche du fond de vallée. Durant la nuit en effet, la canalisation de cet écoulement réduit la variation de température le long de la vallée contrôlant le vent de vallée, favorisant la stagnation de l’air. / Alpine valleys are rarely closed systems, implying that the atmospheric boundary layer of a particular valley is influenced by the surrounding terrain and large-scale flows. A detailed characterisation and quantification of these effects is required in order to design appropriate parameterisation schemes for complex terrains. The focus of this work is to improve the understanding of the effects of surrounding terrain (plains, valleys or tributaries) on the heat and mass budgets of the stable boundary layer of a valley, under dry and weak large-scale wind conditions. Numerical simulations using idealised and real frameworks are performed to meet this goal. Several idealised terrains (configurations) were considered: an infinitely long valley (i.e. two-dimensional), and upstream valleys opening either on a plain (valley-plain), on a wider valley (draining) or on a narrower valley (pooling). In three-dimensional valleys, two main regimes can be identified for all configurations: a transient regime, before the down-valley flow develops, followed by a quasi-steady regime, when the down-valley flow is fully developed. The presence of a downstream valley reduces the along-valley temperature difference, therefore leading to weaker down-valley flows. As a result, the duration of the transient regime increases compared to the respective valley-plain configuration. Its duration is longest for pooling configuration. For strong pooling the along-valley temperature difference can reverse, forcing up-valley flows from the narrower towards the wider valley. In this regime, the volume-averaged cooling rate is found maximum and its magnitude dependent on the configuration considered. Therefore pooling and draining induce colder and deeper boundary layers than the respective valley-plain configurations. In the quasi-steady regime the cooling rate is smaller than in the transient regime, and almost independent of the configuration considered. Indeed, as the pooling character is more pronounced, the warming contribution from advection to the heat budget decreases because of weaker down-valley flows, and so does the cooling contribution from the surface sensible heat flux. The mass budget of the valley boundary layer was found to be controlled by a balance between the convergence of downslope flows at the boundary layer top and the divergence of down-valley flows along the valley axis, with negligible contributions of subsidence far from the slopes. The mass budget highlighted the importance of the return current above the down-valley flow, which may contribute significantly to the inflow of air at the top of the boundary layer. A case-study of a persistent cold-air pool event which occurred in February 2015 in the Arve River Valley during the intensive observation period 1 of the PASSY-2015 field campaign, allowed to quantify the effects of neighbouring valleys on the heat and mass budgets of a real valley atmosphere. The cold-air pool persisted because of warm air advection at the valley top, associated with the passage of an upper-level ridge over Europe. The contributions from each tributary valley to the mass and heat budgets of the valley atmosphere were found to vary from day to day within the persistent stage of the cold-air pool, depending on the large-scale flow. Tributary flows had significant impact on the height of the inversion layer and the strength of the cold-air pool, transporting a significant amount of mass within the valley atmosphere throughout the night. The strong stratification of the near-surface atmosphere prevented the tributary flows from penetrating down to the valley floor. The evolution of the large-scale flow during the episode had a profound impact on the near-surface circulation of the valley. The channelling of the large-scale flow at night, can lead to the decrease of the horizontal temperature difference driving the near-surface down-valley flow, favouring the stagnation of the air close to the ground.

Page generated in 0.0295 seconds