• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 28
  • 28
  • 14
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Topological Methods for Complex Scalar Data

Safa, Issam I. 16 December 2011 (has links)
No description available.
2

Analyzing Stratified Spaces Using Persistent Versions of Intersection and Local Homology

Bendich, Paul 05 August 2008 (has links)
<p>This dissertation places intersection homology and local homology within the framework of persistence, which was originally developed for ordinary homology by Edelsbrunner, Letscher, and Zomorodian. The eventual goal, begun but not completed here, is to provide analytical tools for the study of embedded stratified spaces, as well as for high-dimensional and possibly noisy datasets for which the number of degrees of freedom may vary across the parameter space. Specifically, we create a theory of persistent intersection homology for a filtered stratified space and prove several structural theorems about the pair groups asso- ciated to such a filtration. We prove the correctness of a cubic algorithm which computes these pair groups in a simplicial setting. We also define a series of intersec- tion homology elevation functions for an embedded stratified space and characterize their local maxima in dimension one. In addition, we develop a theory of persistence for a multi-scale analogue of the local homology groups of a stratified space at a point. This takes the form of a series of local homology vineyards which allow one to assess the homological structure within a one-parameter family of neighborhoods of the point. Under the assumption of dense sampling, we prove the correctness of this assessment at a variety of radius scales.</p> / Dissertation
3

A Geometric Approach for Inference on Graphical Models

Lunagomez, Simon January 2009 (has links)
We formulate a novel approach to infer conditional independence models or Markov structure of a multivariate distribution. Specifically, our objective is to place informative prior distributions over graphs (decomposable and unrestricted) and sample efficiently from the induced posterior distribution. We also explore the idea of factorizing according to complete sets of a graph; which implies working with a hypergraph that cannot be retrieved from the graph alone. The key idea we develop in this paper is a parametrization of hypergraphs using the geometry of points in $R^m$. This induces informative priors on graphs from specified priors on finite sets of points. Constructing hypergraphs from finite point sets has been well studied in the fields of computational topology and random geometric graphs. We develop the framework underlying this idea and illustrate its efficacy using simulations. / Dissertation
4

Persistent Cohomology Operations

HB, Aubrey Rae January 2011 (has links)
<p>The work presented in this dissertation includes the study of cohomology and cohomological operations within the framework of Persistence. Although Persistence was originally defined for homology, recent research has developed persistent approaches to other algebraic topology invariants. The work in this document extends the field of persistence to include cohomology classes, cohomology operations and characteristic classes. </p><p>By starting with presenting a combinatorial formula to compute the Stiefel-Whitney homology class, we set up the groundwork for Persistent Characteristic Classes. To discuss persistence for the more general cohomology classes, we construct an algorithm that allows us to find the Poincar'{e} Dual to a homology class. Then, we develop two algorithms that compute persistent cohomology, the general case and one for a specific cohomology class. We follow this with defining and composing an algorithm for extended persistent cohomology. </p><p>In addition, we construct an algorithm for determining when a cohomology class is decomposible and compose it in the context of persistence. Lastly, we provide a proof for a concise formula for the first Steenrod Square of a given cohomology class and then develop an algorithm to determine when a cohomology class is a Steenrod Square of a lower dimensional cohomology class.</p> / Dissertation
5

Computing Topological Features for Data Analysis

Shi, Dayu January 2017 (has links)
No description available.
6

On Computing and Tracking Geometrical and Topological Features

Busaryev, Oleksiy 20 December 2012 (has links)
No description available.
7

Reliable computation of invariant dynamics for conservative discrete dynamical systems

James, Jason Desmond 25 August 2010 (has links)
Computing reliable numerical approximations of invariant sets for nonlinear systems is the core problem for computer assisted study of dynamical systems. In the case of conservative systems the problem is complicated by the fact that there is no phase space dissipation to drive orbits onto attractors. In this dissertation we discuss several contributions to the field of computer assisted study of invariant dynamics in conservative systems. / text
8

Images géométriques de genre arbitraire dans le domaine sphérique

Gauthier, Mathieu January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
9

3-manifolds algorithmically bound 4-manifolds

Churchill, Samuel 27 August 2019 (has links)
This thesis presents an algorithm for producing 4–manifold triangulations with boundary an arbitrary orientable, closed, triangulated 3–manifold. The research is an extension of Costantino and Thurston’s work on determining upper bounds on the number of 4–dimensional simplices necessary to construct such a triangulation. Our first step in this bordism construction is the geometric partitioning of an initial 3–manifold M using smooth singularity theory. This partition provides handle attachment sites on the 4–manifold Mx[0,1] and the ensuing handle attachments eliminate one of the boundary components of Mx[0,1], yielding a 4-manifold with boundary exactly M. We first present the construction in the smooth case before extending the smooth singularity theory to triangulated 3–manifolds. / Graduate
10

Applications of Persistent Homology to Time Varying Systems

Munch, Elizabeth January 2013 (has links)
<p>This dissertation extends the theory of persistent homology to time varying systems. Most of the previous work has been dedicated to using this powerful tool in topological data analysis to study static point clouds. In particular, given a point cloud, we can construct its persistence diagram. Since the diagram varies continuously as the point cloud varies continuously, we study the space of time varying persistence diagrams, called vineyards when they were introduced by Cohen-Steiner, Edelsbrunner, and Morozov.</p><p>We will first show that with a good choice of metric, these vineyards are stable for small perturbations of their associated point clouds. We will also define a new mean for a set of persistence diagrams based on the work of Mileyko et al. which, unlike the previously defined mean, is continuous for geodesic vineyards. </p><p>Next, we study the sensor network problem posed by Ghrist and de Silva, and their application of persistent homology to understand when a set of sensors covers a given region. Giving each of these sensors a probability of failure over time, we show that an exact computation of the probability of failure of the whole system is NP-hard, but give an algorithm which can predict failure in the case of a monitored system.</p><p>Finally, we apply these methods to an automated system which can cluster agents moving in aerial images by their behaviors. We build a data structure for storing and querying the information in real-time, and define behavior vectors which quantify behaviors of interest. This clustering by behavior can be used to find groups of interest, for which we can also quantify behaviors in order to determine whether the group is working together to achieve a common goal, and we speculate that this work can be extended to improving tracking algorithms as well as behavioral predictors.</p> / Dissertation

Page generated in 0.0366 seconds