Spelling suggestions: "subject:"[een] CONCURRENT PROGRAMMING LANGUAGES"" "subject:"[enn] CONCURRENT PROGRAMMING LANGUAGES""
1 |
An operational approach to semantics and translation for programming languagesLi, Wei January 1983 (has links)
The problems of semantics and translation for concurrent programming languages are studied in this thesis. A structural operational approach is introduced to specify the semantics of parallelism and communication. Using this approach, semantics for the concurrent programming languages CSP (Hoare's Communicating Sequential Processes), multitasking and exception handling in Ada, Brinch-Hansen's Edison and CCS (Milner's Calculus of Communicating Systems) are defined and some of their properties are studied. An operational translation theory for concurrent programming languages is given. The concept of the correctness of a translation is formalised, the problem of composing transitions is studied and a composition theorem is proved. A set of sufficient conditions for proving the correctness of a translation is given. A syntax-directed translation from CSP to CCS is given and proved correct. Through this example the proof techniques of this approach is demonstrated. Finally, as an application of operational semantics and translation, a proposal for implementing multitasking in Ada is given via a two-step syntax-directed translation.
|
2 |
[pt] REVISITANDO MONITORES / [en] REVISITING MONITORSRENAN ALMEIDA DE MIRANDA SANTOS 13 August 2020 (has links)
[pt] A maioria das linguagens de programação modernas fornece ferramentas para programação concorrente sem restringir seu uso. Assim, fica a cargo do programador evitar a ocorrência de condições de corrida. Nessa dissertação, revisitamos o modelo de monitores, projetados para prevenir condições de corrida ao limitar o acesso à variáveis compartilhadas, e mostramos que monitores podem ser implementados em linguagens de programação com semântica referencial, dadas as regras de tipagem apropriadas. Nós descrevemos a linguagem de programação Aria, projetada com monitores nativos seguindo a proposta original do modelo. Através da resolução de problemas clássicos de concorrência, nós avaliamos o uso de monitores em Aria
para sincronização em diferentes níveis de granularidade, e extendemos a linguagem com novos recursos a fim de contemplar as limitações do modelo envolvendo desempenho e expressividade. / [en] Most current programming languages do not restrict the use of the concurrency primitives they provide, leaving it to the programmer to detect data races. In this dissertation, we revisit the monitor model, which
guards against data races by guaranteeing that accesses to shared variables occur only inside monitors, and show that this concept can be implemented in a programming language with referential semantics, given appropriate typing rules. We describe the Aria programming language, designed with native monitors according to these rules. Through the discussion of classic concurrency problems, we evaluate the use of Aria monitors for synchronization at different levels of granularity and extend the language with new features to address the limitations of monitors regarding performance and expressiveness.
|
Page generated in 0.0286 seconds