Spelling suggestions: "subject:"[een] CROP RECOGNITION"" "subject:"[enn] CROP RECOGNITION""
1 |
[en] CROP RECOGNITION IN TROPICAL REGIONS BASED ON SPATIO-TEMPORAL CONDITIONAL RANDOM FIELDS FROM MULTI-TEMPORAL AND MULTI-RESOLUTION SEQUENCES OF REMOTE SENSING IMAGES / [pt] RECONHECIMENTOS DE CULTURAS EM REGIÕES TROPICAIS BASEADAS EM CAMPOS ALEATÓRIOS CONDICIONAIS ESPAÇO-TEMPORAIS A PARTIR DE SEQUÊNCIAS DE IMAGENS DE SENSORIAMENTO REMOTO MULTITEMPORAIS E DE MÚLTIPLAS RESOLUÇÕESPEDRO MARCO ACHANCCARAY DIAZ 24 September 2019 (has links)
[pt] O crescimento da população do planeta tem aumentado continuamente a demanda por produtos agrícolas. Assim, a informação quanto a áreas cultivadas e estimativas de produção se tornam cada vez mais importantes. Técnicas baseadas em imagens satelitais constituem uma das opções mais atrativas para o monitoramento agrícola sobre grandes áreas. A maior parte dos trabalhos científicos voltados a esta aplicação foram desenvolvidos para regiões temperadas do planeta, que apresentam um dinâmica muito mais simples da que se tem em regiões tropicais. Neste contexto, a presente tese propõe um novo método automático baseado em Campos Aleatórios Condicionais (CRF) para o reconhecimento de culturas agrícolas em regiões tropicais a partir de sequências de imagens multi-temporais e multiresolução produzidas por diferentes sensores orbitais. Experimentos foram realizados para validar diversas variantes do método proposto. Utilizaramse bases de dados públicas de duas regiões do Brasil que compreendem sequências de imagens óticas e de radar com diferentes resoluções espaciais. Os experimentos realizados demonstraram que o método proposto atingiu acurácias maiores do que métodos baseados em uma única imagem ou sensor. Particularmente, notou-se a redução do efeito sal-e-pimenta nos mapas gerados devido, mormente, à capacidade do método de capturar informação contextual. / [en] The earth population growth has continuously increased the demand for agricultural production. Thus, acreage and crop yield information become increasingly important. Techniques based on satellite images are one of the most attractive options for agricultural monitoring over large areas. Most of the scientific works on this application were developed for temperate regions of the planet, which present a much simpler dynamics than those in tropical regions. In this context, the present thesis proposes a new
automatic method based on Conditional Random Fields (CRF) for the crop recognition in tropical regions from multi-temporal and multi-resolution image sequences from orbital multi-sensors. Experiments were performed to validate several variants of the proposed method. We used public databases from two regions of Brazil that comprise sequences of optical and radar images with different spatial resolutions. The experiments demonstrated that the proposed method achieved a higher accuracy than methods based on
a single image or sensor. Particularly, the reduction of the salt-and-pepper effect in the generated maps was noticed due, mainly, to the capacity of the method to capture contextual information.
|
2 |
[en] CROP RECOGNITION FROM MULTITEMPORAL SAR IMAGE SEQUENCES USING DEEP LEARNING TECHNIQUES / [pt] RECONHECIMENTO DE CULTURAS AGRÍCOLAS A PARTIR DE SEQUENCIAS MULTITEMPORAIS DE IMAGENS SAR UTILIZANDO TÉCNICAS DE APRENDIZADO PROFUNDOLAURA ELENA CUE LA ROSA 27 August 2018 (has links)
[pt] A presente dissertação tem como objetivo avaliar um conjunto de técnicas de aprendizado profundo para o reconhecimento de culturas agrícolas a partir de sequências multitemporais de imagens SAR. Três métodos foram considerados neste estudo: Autoencoders (AEs), Convolutional Neural Networks (CNNs) and Fully Convolutional Networks (FCNs). A avaliação experimental baseou-se em duas bases de dados contendo sequências de imagens geradas pelo sensor Sentinel- 1A. A primeira base cobre uma região tropical e a segunda uma região de clima temperado. Em todos os casos, utilizouse como referência para comparação um classificador Random Forest (RF) operando sobre atributos de textura derivados de matrizes de co-ocorrência. Para a região de clima temperado que apresenta menor dinâmica agrícola as técnicas de aprendizado profundo produziram consistentemente melhores resultados do que a abordagem via RF, sendo AEs o melhor em praticamente todos os experimentos. Na região tropical, onde a dinâmica é mais
complexa, as técnicas de aprendizado profundo mostraram resultados similares aos produzidos pelo método RF, embora os quatro métodos tenham se alternado como o de melhor desempenho dependendo do número e das datas das imagens utilizadas nos experimentos. De um modo geral, as RNCs se mostraram mais estáveis do que os outros métodos, atingindo o melhores resultado entre os métodos avaliados ou estando muito próximos destes em praticamente todos os experimentos. Embora tenha apresentado bons resultados, não foi possível explorar todo o potencial das RTCs neste estudo, sobretudo, devido à dificuldade de se balancear o número de amostras de treinamento entre as classes de culturas agrícolas presentes na área de estudo. A dissertação propõe ainda duas estratégias de pós-processamento
que exploram o conhecimento prévio sobre a dinâmica das culturas agrícolas presentes na área alvo. Experimentos demonstraram que tais técnicas podem produzir um aumento significativo da acurácia da classificação, especialmente para culturas menos abundantes. / [en] The present dissertation aims to evaluate a set of deep learning (DL) techniques for crop mapping from multitemporal sequences of SAR images. Three methods were considered in this study: Autoencoders (AEs), Convolutional Neural Networks (CNNs) and Fully Convolutional Networks (FCNs). The analysis was based on two databases containing image sequences generated by the Sentinel-1A. The first database covers a temperate region that presents a comparatively simpler dynamics, and second database of a tropical region that represents a scenario with complex dynamics. In all cases, a Random Forest (RF) classifier operating on texture features derived from co-occurrence matrices was used as baseline. For the temperate region, DL techniques consistently produced better results than the RF approach, with AE being the best one in almost all experiments. In the tropical region the DL approaches performed similar to RF, alternating as the best performing one for different experimental setups. By and large, CNNs achieved the best or next to the best performance in all experiments. Although the FCNs have performed well, the full potential was not fully exploited in our experiments, mainly due to the difficulty of balancing the number of training samples among the crop types. The dissertation also proposes two post-processing strategies that exploit prior knowledge about the crop dynamics in the target site. Experiments have shown that such
techniques can significantly improve the recognition accuracy, in particular for less abundant crops.
|
3 |
[en] MANY-TO-MANY FULLY CONVOLUTIONAL RECURRENT NETWORKS FOR MULTITEMPORAL CROP RECOGNITION USING SAR IMAGE SEQUENCES / [pt] RECONHECIMENTO DE CULTURAS AGRÍCOLAS UTILIZANDO REDES RECORRENTES A PARTIR DE SEQUÊNCIAS DE IMAGENS SARJORGE ANDRES CHAMORRO MARTINEZ 30 April 2020 (has links)
[pt] Este trabalho propõe e avalia arquiteturas profundas para o reconhecimento de culturas agrícolas a partir de seqüências de imagens multitemporais de sensoriamento remoto. Essas arquiteturas combinam a capacidade de modelar contexto espacial prórpia de redes totalmente convolucionais com a capacidade de modelr o contexto temporal de redes recorrentes para a previsão prever culturas agrícolas em cada data de uma seqüência de imagens multitemporais. O desempenho destes métodos é avaliado em dois conjuntos de dados públicos. Ambas as áreas apresentam alta dinâmica espaçotemporal devido ao clima tropical/subtropical e a práticas agrícolas locais, como a rotação de culturas. Nos experimentos verificou-se que as arquiteturas
propostas superaram os métodos recentes baseados em redes recorrentes em termos de Overall Accuracy (OA) e F1-score médio por classe. / [en] This work proposes and evaluates deep learning architectures for multi-date agricultural crop recognition from remote sensing image sequences. These architectures combine the spatial modelling capabilities of fully convolutional networks and the sequential modelling capabilities of recurrent networks into end-to-end architectures so-called fully convolutional recurrent networks, configured to predict crop type at multiple dates from a multitemporal image sequence. Their performance is assessed over two publicly available datasets. Both datasets present highly spatio-temporal dynamics due to their tropical/sub-tropical climate and local agricultural practices such as crop rotation. The experiments indicated that the proposed architectures outperformed state of the art methods based on recurrent networks in terms of Overall Accuracy (OA) and per-class average F1 score.
|
4 |
[en] END-TO-END CONVOLUTIONAL NEURAL NETWORK COMBINED WITH CONDITIONAL RANDOM FIELDS FOR CROP MAPPING FROM MULTITEMPORAL SAR IMAGERY / [pt] TREINAMENTO PONTA A PONTA DE REDES NEURAIS CONVOLUCIONAIS COMBINADAS COM CAMPOS ALEATÓRIOS CONDICIONAIS PARA O MAPEAMENTO DE CULTURAS A PARTIR DE IMAGENS SAR MULTITEMPORAISLAURA ELENA CUE LA ROSA 21 May 2024 (has links)
[pt] Imagens de sensoriamento remoto permitem o monitoramento e mapeamento de culturas de maneira precisa, apoiando práticas de agriculturaeficientes e sustentáveis com o objetivo de garantir a segurança alimentar.No entanto, a identificação do tipo de cultura a partir de dados de sensoriamento remoto em regiões tropicais ainda são consideradas tarefas comalto grau de dificuldade. As favoráveis condições climáticas permitem o uso,planejamento e o manejo da terra com maior flexibilidade, o que implica emculturas com dinâmicas mais complexas. Além disso, a presença constantede nuvens dificulta o uso de imagens ópticas, tornando as imagens de radar uma alternativa interessante para o mapeamento de culturas em regiõestropicais. Os modelos de campos aleatórios condicionais (CRFs) têm sidousados satisfatoriamente para explorar o contexto temporal e espacial naclassificação de imagens de sensoriamento remoto. Estes modelos oferecemuma alta precisão na classificação, no entanto, dependem de atributos extraídos manualmente com base em conhecimento especializado do domínio.Neste contexto, os métodos de aprendizado profundo, tais como as redesneurais convolucionais (CNNs), provaram ser uma alternativa robusta paraa classificação de imagens de sensoriamento, pois podem aprender atributosótimos diretamente dos dados. Este trabalho apresenta um modelo híbridobaseado em aprendizado profundo e CRF para o reconhecimento de culturas em áreas de regiões tropicais caracterizadas por ter uma dinâmicaespaço–temporal complexa. O framework proposto consiste em dois módulos: uma CNNs que modela o contexto espacial e temporal dos dados deentrada, e o CRF que modela a dinâmica temporal considerando a dependência entre rótulos para datas adjacentes. Estas dependências podem seraprendidas ou desenhadas por um especialista nas práticas de agriculturalocal. Comparações entre diferentes variantes de como modelar as transiçõestemporais são apresentadas usando sequências de imagens SAR de duas municipalidades no Brasil. Os experimentos mostraram melhorias significativasatingindo ate 30 por cento no F1 score por classe e ate 12 por cento no F1 score medio em relação ao modelo de base que não inclui dependências temporais duranteo processo de aprendizagem. / [en] Remote sensing imagery enables accurate crop mapping and monitoring,
supporting efficient and sustainable agricultural practices to ensure food
security. However, accurate crop type identification and crop area estimation from remote sensing data in tropical regions are still challenging tasks.
Compared to the characteristic conditions of temperate regions, the more
favorable weather conditions in tropical regions permit higher flexibility in
land use, planning, and management, which implies complex crop dynamics.
Moreover, the frequent cloud cover prevents the use of optical data during
large periods of the year, making SAR data an attractive alternative for
crop mapping in tropical regions. To exploit both spatial and temporal contex, conditional random fields (CRFs) models have been used successfully
in the classification of RS imagery. These approaches deliver high accuracies; however, they rely on features engineering manually designed based on
domain-specific knowledge. In this context, deep learning methods such as
convolutional neural networks (CNNs) proved to be a robust alternative for
remote sensing image classification, as they can learn optimal features and
classification parameters directly from raw data. This work introduces a novel end-to-end hybrid model based on deep learning and conditional random
fields for crop recognition in areas characterized by complex spatio-temporal
dynamics typical of tropical regions. The proposed framework consists of
two modules: a CNN that models spatial and temporal contexts from the
input data and a CRF that models temporal dynamics considering label dependencies between adjacent epochs. These dependencies can be learned or
designed by an expert in local agricultural practices. Comparisons between
data-driven and prior-knowledge temporal constraints are presented for two
municipalities in Brazil, using multi-temporal SAR image sequences. The
experiments showed significant improvements in per class F1 score of up
to 30 percent and up to 12 percent in average F1 score against a baseline model that
doesn t include temporal dependencies during the learning process.
|
5 |
[pt] SINTETIZAÇÃO DE IMAGENS ÓTICAS MULTIESPECTRAIS A PARTIR DE DADOS SAR/ÓTICOS USANDO REDES GENERATIVAS ADVERSARIAS CONDICIONAIS / [en] SYNTHESIS OF MULTISPECTRAL OPTICAL IMAGES FROM SAR/OPTICAL MULTITEMPORAL DATA USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORKSJOSE DAVID BERMUDEZ CASTRO 08 April 2021 (has links)
[pt] Imagens óticas são frequentemente afetadas pela presença de nuvens. Com o objetivo de reduzir esses efeitos, diferentes técnicas de reconstrução foram propostas nos últimos anos. Uma alternativa comum é explorar dados de sensores ativos, como Radar de Abertura Sintética (SAR), dado que são pouco dependentes das condições atmosféricas e da iluminação solar. Por outro lado, as imagens SAR são mais difíceis de interpretar do que as imagens óticas, exigindo um tratamento específico. Recentemente, as Redes Adversárias Generativas Condicionais (cGANs - Conditional Generative Adversarial Networks) têm sido amplamente utilizadas para aprender funções de mapeamento que relaciona dados de diferentes domínios. Este trabalho, propõe um método baseado em cGANSs para sintetizar dados óticos a partir de dados de outras fontes, incluindo dados de múltiplos sensores, dados multitemporais e dados em múltiplas resoluções. A hipótese desse trabalho é que a qualidade das imagens geradas se beneficia do número de dados utilizados como variáveis condicionantes para a cGAN. A solução proposta foi avaliada em duas bases de dados. Foram utilizadas como variáveis condicionantes dados corregistrados SAR, de uma ou duas datas produzidos pelo sensor Sentinel 1, e dados óticos de sensores da série Sentinel 2 e LANDSAT,
respectivamente. Os resultados coletados dos experimentos demonstraram que a solução proposta é capaz de sintetizar dados óticos realistas. A qualidade das imagens sintetizadas foi medida de duas formas: primeiramente, com base na acurácia da classificação das imagens geradas e, em segundo lugar, medindo-se a similaridade espectral das imagens sintetizadas com imagens de referência. Os experimentos confirmaram a hipótese de que o método proposto tende a produzir melhores resultados à medida que se
exploram mais variáveis condicionantes para a cGAN. / [en] Optical images from Earth Observation are often affected by the presence of clouds. In order to reduce these effects, different reconstruction techniques have been proposed in recent years. A common alternative is to explore data from active sensors, such as Synthetic Aperture Radar (SAR), as they are nearly independent on atmospheric conditions and solar lighting. On the other hand, SAR images are more difficult to interpret than optical images, requiring specific treatment. Recently, conditional
Generative Adversarial Networks (cGANs) have been widely used to learn mapping functions that relate data of different domains. This work proposes a method based on cGANs to synthesize optical data from data of other sources: data of multiple sensors, multitemporal data and data at multiple resolutions. The working hypothesis is that the quality of the generated images benefits from the number of data used as conditioning variables for cGAN. The proposed solution was evaluated in two databases. As conditioning data we used co-registered data from SAR at one or two dates produced by the Sentinel 1 sensor, and optical images produced by the Sentinel 2 and LANDSAT satellite series, respectively. The experimental
results demonstrated that the proposed solution is able to synthesize realistic optical data. The quality of the synthesized images was measured in two ways: firstly, based on the classification accuracy of the generated images and, secondly, on the spectral similarity of the synthesized images with reference images. The experiments confirmed the hypothesis that the proposed method tends to produce better results as we explore more conditioning data for the cGANs.
|
Page generated in 0.0463 seconds