Spelling suggestions: "subject:"[een] EMOTION ANALYSIS"" "subject:"[enn] EMOTION ANALYSIS""
1 |
Live Performance and Emotional Analysis of MathSpring Intelligent Tutor System StudentsGupta, Ankit 12 May 2020 (has links)
An important goal of Educational Data Mining is to provide data and visualization about students’ state of knowledge and students’ affective states. The combination of these provides an understanding of the easiness or hardness of the concepts being taught and the student’s comfortability in it. While various studies have been conducted on estimating students’ knowledge and affect, little research has been done to transform this collected (Raw) data into meaningful information that is more relatable to teachers, parents and other stakeholders, i.e. Non-Researchers. This research seeks to enhance existing Teacher Tools (An application designed within the MathSpring - An Intelligent Tutoring system) to generate a live dashboard for teachers to use in the classroom, as their students are using MathSpring. The system captures student performance and detects students’ facial expressions, which highlight students emotion and engagement, using a deep learning model that detects facial expressions. The live dashboard enables teachers to understand and juxtapose the state of knowledge and corresponding affect of students as they practice math problem solving. This should help teachers understand students’ state of mind better, and feed this information back to act and alter their instruction or interaction with each student in a personalized way. We present results of teachers' perceptions of the usefulness of the Live Dashboard, through a qualitative and quantitative survey.
|
2 |
The computational face for facial emotion analysis: Computer based emotion analysis from the faceAl-dahoud, Ahmad January 2018 (has links)
Facial expressions are considered to be the most revealing way of understanding the human psychological state during face-to-face communication. It is believed that a more natural interaction between humans and machines can be undertaken through the detailed understanding of the different facial expressions which imitate the manner by which humans communicate with each other.
In this research, we study the different aspects of facial emotion detection, analysis and investigate possible hidden identity clues within the facial expressions. We study a deeper aspect of facial expressions whereby we try to identify gender and human identity - which can be considered as a form of emotional biometric - using only the dynamic characteristics of the smile expressions. Further, we present a statistical model for analysing the relationship between facial features and Duchenne (real) and non-Duchenne (posed) smiles. Thus, we identify that the expressions in the eyes contain discriminating features between Duchenne and non-Duchenne smiles.
Our results indicate that facial expressions can be identified through facial movement analysis models where we get an accuracy rate of 86% for classifying the six universal facial expressions and 94% for classifying the common 18 facial action units. Further, we successfully identify the gender using only the dynamic characteristics of the smile expression whereby we obtain an 86% classification rate. Likewise, we present a framework to study the possibility of using the smile as a biometric whereby we show that the human smile is unique and stable. / Al-Zaytoonah University
|
3 |
A Computational Approach to the Analysis and Generation of Emotion in TextKeshtkar, Fazel 09 August 2011 (has links)
Sentiment analysis is a field of computational linguistics involving identification,
extraction, and classification of opinions, sentiments, and emotions expressed in
natural language. Sentiment classification algorithms aim to identify whether the author of a text has a positive or a negative opinion about a topic. One of the main indicators which help to detect the opinion are the words used in the texts. Needless to say, the sentiments expressed in the texts also depend on the syntactic structure and the discourse context. Supervised machine learning approaches to sentiment classification were shown to achieve good results. Classifying texts by emotions requires finer-grained analysis than sentiment classification. In this thesis, we explore the task of emotion and mood classification for blog postings. We propose a
novel approach that uses the hierarchy of possible moods to achieve better results than
a standard flat classification approach. We also show that using sentiment orientation features improves the performance of classification. We used the LiveJournal blog corpus as a dataset to train and evaluate our method.
Another contribution of this work is extracting paraphrases for emotion terms based on the six basics emotions proposed by Ekman (\textit{happiness, anger, sadness, disgust, surprise, fear}). Paraphrases are different ways to express the same information. Algorithms to extract and automatically identify paraphrases are of interest from both linguistic and practical points of view. Our paraphrase extraction method is based on a bootstrapping algorithms that starts with seed words. Unlike in previous work, our algorithm does not need a parallel corpus.
In Natural Language Generation (NLG), paraphrasing is employed to create more varied and natural text. In our research, we extract paraphrases for emotions, with the goal of using them to automatically generate emotional texts (such as friendly or hostile texts) for conversations between intelligent agents and characters in educational games.
Nowadays, online services are popular in many disciplines such as: e-learning, interactive games, educational games, stock market, chat rooms and so on. NLG methods can be used in order to generate more interesting and normal texts for such applications. Generating text with emotions is one of the contributions of our work.
In the last part of this thesis, we give an overview of NLG from an applied
system's points of view. We discuss when NLG techniques can be used; we explained the requirements analysis and specification of NLG systems. We also, describe the main NLG tasks of content determination, discourse planning, sentence aggregation, lexicalization, referring expression generation, and linguistic realisation. Moreover, we describe our Authoring Tool that we developed in order to allow writers without programming skills to automatically generate texts for educational games.
We develop an NLG system that can generate text with different emotions. To do this, we introduce our pattern-based model for generation. We show our model starts with initial patterns, then constructs extended patterns from which we choose ``final'' patterns that are suitable for generating emotion sentences. A user can generate sentences to express the desired emotions by using our patterns. Alternatively, the user can use our Authoring Tool to generate sentences with emotions. Our acquired paraphrases will be employed by the tool in order to generate more varied outputs.
|
4 |
A Computational Approach to the Analysis and Generation of Emotion in TextKeshtkar, Fazel 09 August 2011 (has links)
Sentiment analysis is a field of computational linguistics involving identification,
extraction, and classification of opinions, sentiments, and emotions expressed in
natural language. Sentiment classification algorithms aim to identify whether the author of a text has a positive or a negative opinion about a topic. One of the main indicators which help to detect the opinion are the words used in the texts. Needless to say, the sentiments expressed in the texts also depend on the syntactic structure and the discourse context. Supervised machine learning approaches to sentiment classification were shown to achieve good results. Classifying texts by emotions requires finer-grained analysis than sentiment classification. In this thesis, we explore the task of emotion and mood classification for blog postings. We propose a
novel approach that uses the hierarchy of possible moods to achieve better results than
a standard flat classification approach. We also show that using sentiment orientation features improves the performance of classification. We used the LiveJournal blog corpus as a dataset to train and evaluate our method.
Another contribution of this work is extracting paraphrases for emotion terms based on the six basics emotions proposed by Ekman (\textit{happiness, anger, sadness, disgust, surprise, fear}). Paraphrases are different ways to express the same information. Algorithms to extract and automatically identify paraphrases are of interest from both linguistic and practical points of view. Our paraphrase extraction method is based on a bootstrapping algorithms that starts with seed words. Unlike in previous work, our algorithm does not need a parallel corpus.
In Natural Language Generation (NLG), paraphrasing is employed to create more varied and natural text. In our research, we extract paraphrases for emotions, with the goal of using them to automatically generate emotional texts (such as friendly or hostile texts) for conversations between intelligent agents and characters in educational games.
Nowadays, online services are popular in many disciplines such as: e-learning, interactive games, educational games, stock market, chat rooms and so on. NLG methods can be used in order to generate more interesting and normal texts for such applications. Generating text with emotions is one of the contributions of our work.
In the last part of this thesis, we give an overview of NLG from an applied
system's points of view. We discuss when NLG techniques can be used; we explained the requirements analysis and specification of NLG systems. We also, describe the main NLG tasks of content determination, discourse planning, sentence aggregation, lexicalization, referring expression generation, and linguistic realisation. Moreover, we describe our Authoring Tool that we developed in order to allow writers without programming skills to automatically generate texts for educational games.
We develop an NLG system that can generate text with different emotions. To do this, we introduce our pattern-based model for generation. We show our model starts with initial patterns, then constructs extended patterns from which we choose ``final'' patterns that are suitable for generating emotion sentences. A user can generate sentences to express the desired emotions by using our patterns. Alternatively, the user can use our Authoring Tool to generate sentences with emotions. Our acquired paraphrases will be employed by the tool in order to generate more varied outputs.
|
5 |
Emotion Analysis Of Turkish Texts By Using Machine Learning MethodsBoynukalin, Zeynep 01 July 2012 (has links) (PDF)
Automatically analysing the emotion in texts is in increasing interest in today&rsquo / s research fields.
The aim is to develop a machine that can detect type of user&rsquo / s emotion from his/her text.
Emotion classification of English texts is studied by several researchers and promising results
are achieved. In this thesis, an emotion classification study on Turkish texts is introduced.
To the best of our knowledge, this is the first study on emotion analysis of Turkish texts. In
English there exists some well-defined datasets for the purpose of emotion classification, but
we could not find datasets in Turkish suitable for this study. Therefore, another important
contribution is the generating a new data set in Turkish for emotion analysis. The dataset is
generated by combining two types of sources. Several classification algorithms are applied
on the dataset and results are compared. Due to the nature of Turkish language, new features
are added to the existing methods to improve the success of the proposed method.
|
6 |
A Computational Approach to the Analysis and Generation of Emotion in TextKeshtkar, Fazel 09 August 2011 (has links)
Sentiment analysis is a field of computational linguistics involving identification,
extraction, and classification of opinions, sentiments, and emotions expressed in
natural language. Sentiment classification algorithms aim to identify whether the author of a text has a positive or a negative opinion about a topic. One of the main indicators which help to detect the opinion are the words used in the texts. Needless to say, the sentiments expressed in the texts also depend on the syntactic structure and the discourse context. Supervised machine learning approaches to sentiment classification were shown to achieve good results. Classifying texts by emotions requires finer-grained analysis than sentiment classification. In this thesis, we explore the task of emotion and mood classification for blog postings. We propose a
novel approach that uses the hierarchy of possible moods to achieve better results than
a standard flat classification approach. We also show that using sentiment orientation features improves the performance of classification. We used the LiveJournal blog corpus as a dataset to train and evaluate our method.
Another contribution of this work is extracting paraphrases for emotion terms based on the six basics emotions proposed by Ekman (\textit{happiness, anger, sadness, disgust, surprise, fear}). Paraphrases are different ways to express the same information. Algorithms to extract and automatically identify paraphrases are of interest from both linguistic and practical points of view. Our paraphrase extraction method is based on a bootstrapping algorithms that starts with seed words. Unlike in previous work, our algorithm does not need a parallel corpus.
In Natural Language Generation (NLG), paraphrasing is employed to create more varied and natural text. In our research, we extract paraphrases for emotions, with the goal of using them to automatically generate emotional texts (such as friendly or hostile texts) for conversations between intelligent agents and characters in educational games.
Nowadays, online services are popular in many disciplines such as: e-learning, interactive games, educational games, stock market, chat rooms and so on. NLG methods can be used in order to generate more interesting and normal texts for such applications. Generating text with emotions is one of the contributions of our work.
In the last part of this thesis, we give an overview of NLG from an applied
system's points of view. We discuss when NLG techniques can be used; we explained the requirements analysis and specification of NLG systems. We also, describe the main NLG tasks of content determination, discourse planning, sentence aggregation, lexicalization, referring expression generation, and linguistic realisation. Moreover, we describe our Authoring Tool that we developed in order to allow writers without programming skills to automatically generate texts for educational games.
We develop an NLG system that can generate text with different emotions. To do this, we introduce our pattern-based model for generation. We show our model starts with initial patterns, then constructs extended patterns from which we choose ``final'' patterns that are suitable for generating emotion sentences. A user can generate sentences to express the desired emotions by using our patterns. Alternatively, the user can use our Authoring Tool to generate sentences with emotions. Our acquired paraphrases will be employed by the tool in order to generate more varied outputs.
|
7 |
A Computational Approach to the Analysis and Generation of Emotion in TextKeshtkar, Fazel January 2011 (has links)
Sentiment analysis is a field of computational linguistics involving identification,
extraction, and classification of opinions, sentiments, and emotions expressed in
natural language. Sentiment classification algorithms aim to identify whether the author of a text has a positive or a negative opinion about a topic. One of the main indicators which help to detect the opinion are the words used in the texts. Needless to say, the sentiments expressed in the texts also depend on the syntactic structure and the discourse context. Supervised machine learning approaches to sentiment classification were shown to achieve good results. Classifying texts by emotions requires finer-grained analysis than sentiment classification. In this thesis, we explore the task of emotion and mood classification for blog postings. We propose a
novel approach that uses the hierarchy of possible moods to achieve better results than
a standard flat classification approach. We also show that using sentiment orientation features improves the performance of classification. We used the LiveJournal blog corpus as a dataset to train and evaluate our method.
Another contribution of this work is extracting paraphrases for emotion terms based on the six basics emotions proposed by Ekman (\textit{happiness, anger, sadness, disgust, surprise, fear}). Paraphrases are different ways to express the same information. Algorithms to extract and automatically identify paraphrases are of interest from both linguistic and practical points of view. Our paraphrase extraction method is based on a bootstrapping algorithms that starts with seed words. Unlike in previous work, our algorithm does not need a parallel corpus.
In Natural Language Generation (NLG), paraphrasing is employed to create more varied and natural text. In our research, we extract paraphrases for emotions, with the goal of using them to automatically generate emotional texts (such as friendly or hostile texts) for conversations between intelligent agents and characters in educational games.
Nowadays, online services are popular in many disciplines such as: e-learning, interactive games, educational games, stock market, chat rooms and so on. NLG methods can be used in order to generate more interesting and normal texts for such applications. Generating text with emotions is one of the contributions of our work.
In the last part of this thesis, we give an overview of NLG from an applied
system's points of view. We discuss when NLG techniques can be used; we explained the requirements analysis and specification of NLG systems. We also, describe the main NLG tasks of content determination, discourse planning, sentence aggregation, lexicalization, referring expression generation, and linguistic realisation. Moreover, we describe our Authoring Tool that we developed in order to allow writers without programming skills to automatically generate texts for educational games.
We develop an NLG system that can generate text with different emotions. To do this, we introduce our pattern-based model for generation. We show our model starts with initial patterns, then constructs extended patterns from which we choose ``final'' patterns that are suitable for generating emotion sentences. A user can generate sentences to express the desired emotions by using our patterns. Alternatively, the user can use our Authoring Tool to generate sentences with emotions. Our acquired paraphrases will be employed by the tool in order to generate more varied outputs.
|
8 |
Analyse des sentiments et des émotions de commentaires complexes en langue française. / Sentiment and emotion analysis of complex reviewsPecore, Stefania 28 January 2019 (has links)
Les définitions des mots « sentiment », « opinion » et « émotion » sont toujours très vagues comme l’atteste aussi le dictionnaire qui semble expliquer un mot en utilisant le deux autres. Tout le monde est affecté par les opinions : les entreprises pour vendre les produits, les gens pour les acheter et, plus en général, pour prendre des décisions, les chercheurs en intelligence artificielle pour comprendre la nature de l’être humain. Aujourd’hui on a une quantité d’information disponible jamais vue avant, mais qui résulte peu accessible. Les mégadonnées (en anglais « big data ») ne sont pas organisées, surtout pour certaines langues – dont la difficulté à les exploiter. La recherche française souffre d’une manque de ressources « prêt-à-porter » pour conduire des tests. Cette thèse a l’objectif d’explorer la nature des sentiments et des émotions, dans le cadre du Traitement Automatique du Langage et des Corpus. Les contributions de cette thèse sont plusieurs : création de nouvelles ressources pour l’analyse du sentiment et de l’émotion, emploi et comparaison de plusieurs techniques d’apprentissage automatique, et plus important, l’étude du problème sous différents points de vue : classification des commentaires en ligne en polarité (positive et négative), Aspect-Based Sentiment Analysis des caractéristiques du produit recensé. Enfin, un étude psycholinguistique, supporté par des approches lexicales et d’apprentissage automatique, sur le rapport entre qui juge et l’objet jugé. / "Sentiment", "opinion" and "emotion" are words really vaguely defined; not even the dictionary seems to be of any help, being it the first to define each of the three by using the remaining two. And yet, the civilised world is heavily affected by opinions: companies need them to understand how to sell their products; people use them to buy the most fitting product and, more generally, to weigh their decisions; researchers exploit them in Artificial Intelligence studies to understand the nature of the human being. Today we can count on a humongous amount of available information, though it’s hard to use it. In fact, the so-called “Big data” are not always structured – especially for certain languages. French research suffers from a lack of readily available resources for tests. In the context of Natural Language Processing, this thesis aims to explore the nature of sentiment and emotion. Some of our contributions to the NLP research community are: creation of new resources for sentiment and emotion analysis, tests and comparisons of several machine learning methods to study the problem from different points of view - classification of online reviews using sentiment polarity, classification of product characteristics using Aspect- Based Sentiment Analysis. Finally, a psycholinguistic study - supported by a machine learning and lexical approaches – on the relation between who judges, the reviewer, and the object that has been judged, the product.
|
9 |
Automatic Emotion Identification from TextWang, Wenbo 02 September 2015 (has links)
No description available.
|
10 |
Computational Techniques for Human Smile AnalysisUgail, Hassan, Aldahoud, Ahmad A.A. 20 March 2022 (has links)
No / Explains how to implement computational techniques for human smile analysis
Shares insights into the human personality traits hidden in a smile
Enriches the understanding of human emotions through examples of face analysis
Includes key examples of the practical use of computer based smile analysis.
|
Page generated in 0.0286 seconds